MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp21 Structured version   Visualization version   GIF version

Theorem 3imp21 1115
Description: The importation inference 3imp 1112 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1124 by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
3imp.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
3imp21 ((𝜓𝜑𝜒) → 𝜃)

Proof of Theorem 3imp21
StepHypRef Expression
1 3imp.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com13 88 . 2 (𝜒 → (𝜓 → (𝜑𝜃)))
323imp231 1114 1 ((𝜓𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  3com12  1124  sotri3  6132  isinf  9260  isinfOLD  9261  infssuni  9343  fin1a2lem10  10404  elfz1b  13570  bernneq  14192  expnngt1  14204  swrdco  14788  dfgcd2  16488  lmodvsmmulgdi  20507  mamufacex  21891  gausslemma2dlem1a  26868  ssltun1  27309  ssltright  27366  upgrewlkle2  28863  pthdivtx  28986  clwwlkinwwlk  29293  upgr3v3e3cycl  29433  upgr4cycl4dv4e  29438  numclwwlk2lem1lem  29595  frgrregord013  29648  ax6e2ndeqALT  43692  fmtnofac2  46237
  Copyright terms: Public domain W3C validator