| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version | ||
| Description: The importation inference 3imp 1110 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1123 by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 3 | 2 | 3imp231 1112 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com12 1123 sotri3 6079 isinf 9154 infssuni 9236 fin1a2lem10 10303 elfz1b 13496 bernneq 14136 expnngt1 14148 swrdco 14744 dfgcd2 16457 lmodvsmmulgdi 20800 mamufacex 22281 gausslemma2dlem1a 27274 ssltun1 27719 ssltright 27785 expsgt0 28329 upgrewlkle2 29552 pthdivtx 29672 clwwlkinwwlk 29984 upgr3v3e3cycl 30124 upgr4cycl4dv4e 30129 numclwwlk2lem1lem 30286 frgrregord013 30339 ax6e2ndeqALT 44904 fmtnofac2 47553 |
| Copyright terms: Public domain | W3C validator |