Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version |
Description: The importation inference 3imp 1110 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1122 by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
3 | 2 | 3imp231 1112 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3com12 1122 sotri3 6035 isinf 9036 infssuni 9110 fin1a2lem10 10165 elfz1b 13325 bernneq 13944 expnngt1 13956 swrdco 14550 dfgcd2 16254 lmodvsmmulgdi 20158 mamufacex 21538 gausslemma2dlem1a 26513 upgrewlkle2 27973 pthdivtx 28097 clwwlkinwwlk 28404 upgr3v3e3cycl 28544 upgr4cycl4dv4e 28549 numclwwlk2lem1lem 28706 frgrregord013 28759 ssltun1 34002 ssltright 34055 ax6e2ndeqALT 42551 fmtnofac2 45021 |
Copyright terms: Public domain | W3C validator |