![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version |
Description: The importation inference 3imp 1138 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1154 by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
3 | 2 | 3imp231 1141 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: 3com12 1154 sotri3 5742 elfz1b 12659 expnngt1 13278 gausslemma2dlem1a 25439 upgrewlkle2 26848 pthdivtx 26975 clwwlkinwwlk 27340 clwwlkinwwlkOLD 27341 clwlksfclwwlkOLD 27395 upgr3v3e3cycl 27516 upgr4cycl4dv4e 27521 numclwwlk2lem1lem 27684 frgrregord013 27772 ax6e2ndeqALT 39915 fmtnofac2 42251 |
Copyright terms: Public domain | W3C validator |