Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version |
Description: The importation inference 3imp 1109 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1121 by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
3 | 2 | 3imp231 1111 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3com12 1121 sotri3 6024 isinf 8965 infssuni 9040 fin1a2lem10 10096 elfz1b 13254 bernneq 13872 expnngt1 13884 swrdco 14478 dfgcd2 16182 lmodvsmmulgdi 20073 mamufacex 21448 gausslemma2dlem1a 26418 upgrewlkle2 27876 pthdivtx 27998 clwwlkinwwlk 28305 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 numclwwlk2lem1lem 28607 frgrregord013 28660 ssltun1 33929 ssltright 33982 ax6e2ndeqALT 42440 fmtnofac2 44909 |
Copyright terms: Public domain | W3C validator |