![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version |
Description: The importation inference 3imp 1111 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1123 by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
3 | 2 | 3imp231 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3com12 1123 sotri3 6162 isinf 9323 isinfOLD 9324 infssuni 9414 fin1a2lem10 10478 elfz1b 13653 bernneq 14278 expnngt1 14290 swrdco 14886 dfgcd2 16593 lmodvsmmulgdi 20917 mamufacex 22421 gausslemma2dlem1a 27427 ssltun1 27871 ssltright 27928 expsgt0 28433 upgrewlkle2 29642 pthdivtx 29765 clwwlkinwwlk 30072 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 numclwwlk2lem1lem 30374 frgrregord013 30427 ax6e2ndeqALT 44902 fmtnofac2 47443 |
Copyright terms: Public domain | W3C validator |