MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp21 Structured version   Visualization version   GIF version

Theorem 3imp21 1113
Description: The importation inference 3imp 1110 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1123 by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
3imp.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
3imp21 ((𝜓𝜑𝜒) → 𝜃)

Proof of Theorem 3imp21
StepHypRef Expression
1 3imp.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com13 88 . 2 (𝜒 → (𝜓 → (𝜑𝜃)))
323imp231 1112 1 ((𝜓𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3com12  1123  sotri3  6091  isinf  9183  isinfOLD  9184  infssuni  9273  fin1a2lem10  10338  elfz1b  13530  bernneq  14170  expnngt1  14182  swrdco  14779  dfgcd2  16492  lmodvsmmulgdi  20779  mamufacex  22259  gausslemma2dlem1a  27252  ssltun1  27696  ssltright  27759  expsgt0  28298  upgrewlkle2  29510  pthdivtx  29630  clwwlkinwwlk  29942  upgr3v3e3cycl  30082  upgr4cycl4dv4e  30087  numclwwlk2lem1lem  30244  frgrregord013  30297  ax6e2ndeqALT  44893  fmtnofac2  47543
  Copyright terms: Public domain W3C validator