| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version | ||
| Description: The importation inference 3imp 1110 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1123 by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 3 | 2 | 3imp231 1112 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com12 1123 sotri3 6091 isinf 9183 isinfOLD 9184 infssuni 9273 fin1a2lem10 10338 elfz1b 13530 bernneq 14170 expnngt1 14182 swrdco 14779 dfgcd2 16492 lmodvsmmulgdi 20779 mamufacex 22259 gausslemma2dlem1a 27252 ssltun1 27696 ssltright 27759 expsgt0 28298 upgrewlkle2 29510 pthdivtx 29630 clwwlkinwwlk 29942 upgr3v3e3cycl 30082 upgr4cycl4dv4e 30087 numclwwlk2lem1lem 30244 frgrregord013 30297 ax6e2ndeqALT 44893 fmtnofac2 47543 |
| Copyright terms: Public domain | W3C validator |