MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3imp21 Structured version   Visualization version   GIF version

Theorem 3imp21 1112
Description: The importation inference 3imp 1109 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1121 by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
3imp.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
3imp21 ((𝜓𝜑𝜒) → 𝜃)

Proof of Theorem 3imp21
StepHypRef Expression
1 3imp.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com13 88 . 2 (𝜒 → (𝜓 → (𝜑𝜃)))
323imp231 1111 1 ((𝜓𝜑𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  3com12  1121  sotri3  6024  isinf  8965  infssuni  9040  fin1a2lem10  10096  elfz1b  13254  bernneq  13872  expnngt1  13884  swrdco  14478  dfgcd2  16182  lmodvsmmulgdi  20073  mamufacex  21448  gausslemma2dlem1a  26418  upgrewlkle2  27876  pthdivtx  27998  clwwlkinwwlk  28305  upgr3v3e3cycl  28445  upgr4cycl4dv4e  28450  numclwwlk2lem1lem  28607  frgrregord013  28660  ssltun1  33929  ssltright  33982  ax6e2ndeqALT  42440  fmtnofac2  44909
  Copyright terms: Public domain W3C validator