![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version |
Description: The importation inference 3imp 1108 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1120 by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
3 | 2 | 3imp231 1110 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: 3com12 1120 sotri3 6141 isinf 9291 isinfOLD 9292 infssuni 9375 fin1a2lem10 10440 elfz1b 13610 bernneq 14231 expnngt1 14243 swrdco 14828 dfgcd2 16529 lmodvsmmulgdi 20787 mamufacex 22311 gausslemma2dlem1a 27318 ssltun1 27761 ssltright 27818 upgrewlkle2 29440 pthdivtx 29563 clwwlkinwwlk 29870 upgr3v3e3cycl 30010 upgr4cycl4dv4e 30015 numclwwlk2lem1lem 30172 frgrregord013 30225 ax6e2ndeqALT 44401 fmtnofac2 46938 |
Copyright terms: Public domain | W3C validator |