| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version | ||
| Description: The importation inference 3imp 1110 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1123 by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 3 | 2 | 3imp231 1112 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com12 1123 sotri3 6124 isinf 9273 isinfOLD 9274 infssuni 9363 fin1a2lem10 10428 elfz1b 13615 bernneq 14252 expnngt1 14264 swrdco 14861 dfgcd2 16570 lmodvsmmulgdi 20859 mamufacex 22339 gausslemma2dlem1a 27333 ssltun1 27777 ssltright 27840 expsgt0 28379 upgrewlkle2 29591 pthdivtx 29714 clwwlkinwwlk 30026 upgr3v3e3cycl 30166 upgr4cycl4dv4e 30171 numclwwlk2lem1lem 30328 frgrregord013 30381 ax6e2ndeqALT 44922 fmtnofac2 47550 |
| Copyright terms: Public domain | W3C validator |