![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version |
Description: The importation inference 3imp 1112 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1124 by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
3 | 2 | 3imp231 1114 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3com12 1124 sotri3 6132 isinf 9260 isinfOLD 9261 infssuni 9343 fin1a2lem10 10404 elfz1b 13570 bernneq 14192 expnngt1 14204 swrdco 14788 dfgcd2 16488 lmodvsmmulgdi 20507 mamufacex 21891 gausslemma2dlem1a 26868 ssltun1 27309 ssltright 27366 upgrewlkle2 28863 pthdivtx 28986 clwwlkinwwlk 29293 upgr3v3e3cycl 29433 upgr4cycl4dv4e 29438 numclwwlk2lem1lem 29595 frgrregord013 29648 ax6e2ndeqALT 43692 fmtnofac2 46237 |
Copyright terms: Public domain | W3C validator |