| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version | ||
| Description: The importation inference 3imp 1110 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1123 by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 3 | 2 | 3imp231 1112 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com12 1123 sotri3 6103 isinf 9207 isinfOLD 9208 infssuni 9297 fin1a2lem10 10362 elfz1b 13554 bernneq 14194 expnngt1 14206 swrdco 14803 dfgcd2 16516 lmodvsmmulgdi 20803 mamufacex 22283 gausslemma2dlem1a 27276 ssltun1 27720 ssltright 27783 expsgt0 28322 upgrewlkle2 29534 pthdivtx 29657 clwwlkinwwlk 29969 upgr3v3e3cycl 30109 upgr4cycl4dv4e 30114 numclwwlk2lem1lem 30271 frgrregord013 30324 ax6e2ndeqALT 44920 fmtnofac2 47570 |
| Copyright terms: Public domain | W3C validator |