| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version | ||
| Description: The importation inference 3imp 1110 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1123 by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 3 | 2 | 3imp231 1112 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com12 1123 sotri3 6106 isinf 9214 isinfOLD 9215 infssuni 9304 fin1a2lem10 10369 elfz1b 13561 bernneq 14201 expnngt1 14213 swrdco 14810 dfgcd2 16523 lmodvsmmulgdi 20810 mamufacex 22290 gausslemma2dlem1a 27283 ssltun1 27727 ssltright 27790 expsgt0 28329 upgrewlkle2 29541 pthdivtx 29664 clwwlkinwwlk 29976 upgr3v3e3cycl 30116 upgr4cycl4dv4e 30121 numclwwlk2lem1lem 30278 frgrregord013 30331 ax6e2ndeqALT 44927 fmtnofac2 47574 |
| Copyright terms: Public domain | W3C validator |