| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3imp21 | Structured version Visualization version GIF version | ||
| Description: The importation inference 3imp 1110 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1123 by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp21 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com13 88 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 3 | 2 | 3imp231 1112 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3com12 1123 sotri3 6091 isinf 9183 isinfOLD 9184 infssuni 9273 fin1a2lem10 10338 elfz1b 13530 bernneq 14170 expnngt1 14182 swrdco 14779 dfgcd2 16492 lmodvsmmulgdi 20835 mamufacex 22316 gausslemma2dlem1a 27309 ssltun1 27754 ssltright 27820 expsgt0 28364 upgrewlkle2 29587 pthdivtx 29707 clwwlkinwwlk 30019 upgr3v3e3cycl 30159 upgr4cycl4dv4e 30164 numclwwlk2lem1lem 30321 frgrregord013 30374 ax6e2ndeqALT 44913 fmtnofac2 47563 |
| Copyright terms: Public domain | W3C validator |