MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem10 Structured version   Visualization version   GIF version

Theorem fin1a2lem10 9834
Description: Lemma for fin1a2 9840. A nonempty finite union of members of a chain is a member of the chain. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem10 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ∧ [] Or 𝐴) → 𝐴𝐴)

Proof of Theorem fin1a2lem10
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqneqall 3030 . . . 4 (𝑎 = ∅ → (𝑎 ≠ ∅ → ( [] Or 𝑎 𝑎𝑎)))
2 tru 1540 . . . . 5
32a1i 11 . . . 4 (𝑎 = ∅ → ⊤)
41, 32thd 267 . . 3 (𝑎 = ∅ → ((𝑎 ≠ ∅ → ( [] Or 𝑎 𝑎𝑎)) ↔ ⊤))
5 neeq1 3081 . . . 4 (𝑎 = 𝑏 → (𝑎 ≠ ∅ ↔ 𝑏 ≠ ∅))
6 soeq2 5498 . . . . 5 (𝑎 = 𝑏 → ( [] Or 𝑎 ↔ [] Or 𝑏))
7 unieq 4852 . . . . . 6 (𝑎 = 𝑏 𝑎 = 𝑏)
8 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
97, 8eleq12d 2910 . . . . 5 (𝑎 = 𝑏 → ( 𝑎𝑎 𝑏𝑏))
106, 9imbi12d 347 . . . 4 (𝑎 = 𝑏 → (( [] Or 𝑎 𝑎𝑎) ↔ ( [] Or 𝑏 𝑏𝑏)))
115, 10imbi12d 347 . . 3 (𝑎 = 𝑏 → ((𝑎 ≠ ∅ → ( [] Or 𝑎 𝑎𝑎)) ↔ (𝑏 ≠ ∅ → ( [] Or 𝑏 𝑏𝑏))))
12 neeq1 3081 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ≠ ∅ ↔ (𝑏 ∪ {𝑐}) ≠ ∅))
13 soeq2 5498 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ( [] Or 𝑎 ↔ [] Or (𝑏 ∪ {𝑐})))
14 unieq 4852 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → 𝑎 = (𝑏 ∪ {𝑐}))
15 id 22 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → 𝑎 = (𝑏 ∪ {𝑐}))
1614, 15eleq12d 2910 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ( 𝑎𝑎 (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))
1713, 16imbi12d 347 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → (( [] Or 𝑎 𝑎𝑎) ↔ ( [] Or (𝑏 ∪ {𝑐}) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐}))))
1812, 17imbi12d 347 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎 ≠ ∅ → ( [] Or 𝑎 𝑎𝑎)) ↔ ((𝑏 ∪ {𝑐}) ≠ ∅ → ( [] Or (𝑏 ∪ {𝑐}) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))))
19 neeq1 3081 . . . 4 (𝑎 = 𝐴 → (𝑎 ≠ ∅ ↔ 𝐴 ≠ ∅))
20 soeq2 5498 . . . . 5 (𝑎 = 𝐴 → ( [] Or 𝑎 ↔ [] Or 𝐴))
21 unieq 4852 . . . . . 6 (𝑎 = 𝐴 𝑎 = 𝐴)
22 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
2321, 22eleq12d 2910 . . . . 5 (𝑎 = 𝐴 → ( 𝑎𝑎 𝐴𝐴))
2420, 23imbi12d 347 . . . 4 (𝑎 = 𝐴 → (( [] Or 𝑎 𝑎𝑎) ↔ ( [] Or 𝐴 𝐴𝐴)))
2519, 24imbi12d 347 . . 3 (𝑎 = 𝐴 → ((𝑎 ≠ ∅ → ( [] Or 𝑎 𝑎𝑎)) ↔ (𝐴 ≠ ∅ → ( [] Or 𝐴 𝐴𝐴))))
26 vex 3500 . . . . . . . . . . 11 𝑐 ∈ V
2726unisn 4861 . . . . . . . . . 10 {𝑐} = 𝑐
28 vsnid 4605 . . . . . . . . . 10 𝑐 ∈ {𝑐}
2927, 28eqeltri 2912 . . . . . . . . 9 {𝑐} ∈ {𝑐}
30 uneq1 4135 . . . . . . . . . . . 12 (𝑏 = ∅ → (𝑏 ∪ {𝑐}) = (∅ ∪ {𝑐}))
31 uncom 4132 . . . . . . . . . . . . 13 (∅ ∪ {𝑐}) = ({𝑐} ∪ ∅)
32 un0 4347 . . . . . . . . . . . . 13 ({𝑐} ∪ ∅) = {𝑐}
3331, 32eqtri 2847 . . . . . . . . . . . 12 (∅ ∪ {𝑐}) = {𝑐}
3430, 33syl6eq 2875 . . . . . . . . . . 11 (𝑏 = ∅ → (𝑏 ∪ {𝑐}) = {𝑐})
3534unieqd 4855 . . . . . . . . . 10 (𝑏 = ∅ → (𝑏 ∪ {𝑐}) = {𝑐})
3635, 34eleq12d 2910 . . . . . . . . 9 (𝑏 = ∅ → ( (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐}) ↔ {𝑐} ∈ {𝑐}))
3729, 36mpbiri 260 . . . . . . . 8 (𝑏 = ∅ → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐}))
3837a1d 25 . . . . . . 7 (𝑏 = ∅ → ((𝑏 ≠ ∅ → ( [] Or 𝑏 𝑏𝑏)) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))
3938adantl 484 . . . . . 6 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ 𝑏 = ∅) → ((𝑏 ≠ ∅ → ( [] Or 𝑏 𝑏𝑏)) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))
40 simpr 487 . . . . . . 7 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ 𝑏 ≠ ∅) → 𝑏 ≠ ∅)
41 ssun1 4151 . . . . . . . . 9 𝑏 ⊆ (𝑏 ∪ {𝑐})
42 simpl2 1188 . . . . . . . . 9 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ 𝑏 ≠ ∅) → [] Or (𝑏 ∪ {𝑐}))
43 soss 5496 . . . . . . . . 9 (𝑏 ⊆ (𝑏 ∪ {𝑐}) → ( [] Or (𝑏 ∪ {𝑐}) → [] Or 𝑏))
4441, 42, 43mpsyl 68 . . . . . . . 8 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ 𝑏 ≠ ∅) → [] Or 𝑏)
45 uniun 4864 . . . . . . . . . . 11 (𝑏 ∪ {𝑐}) = ( 𝑏 {𝑐})
4627uneq2i 4139 . . . . . . . . . . 11 ( 𝑏 {𝑐}) = ( 𝑏𝑐)
4745, 46eqtri 2847 . . . . . . . . . 10 (𝑏 ∪ {𝑐}) = ( 𝑏𝑐)
48 simprr 771 . . . . . . . . . . 11 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ (𝑏 ≠ ∅ ∧ 𝑏𝑏)) → 𝑏𝑏)
49 simpl2 1188 . . . . . . . . . . . 12 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ (𝑏 ≠ ∅ ∧ 𝑏𝑏)) → [] Or (𝑏 ∪ {𝑐}))
50 elun1 4155 . . . . . . . . . . . . 13 ( 𝑏𝑏 𝑏 ∈ (𝑏 ∪ {𝑐}))
5150ad2antll 727 . . . . . . . . . . . 12 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ (𝑏 ≠ ∅ ∧ 𝑏𝑏)) → 𝑏 ∈ (𝑏 ∪ {𝑐}))
52 ssun2 4152 . . . . . . . . . . . . . 14 {𝑐} ⊆ (𝑏 ∪ {𝑐})
5352, 28sselii 3967 . . . . . . . . . . . . 13 𝑐 ∈ (𝑏 ∪ {𝑐})
5453a1i 11 . . . . . . . . . . . 12 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ (𝑏 ≠ ∅ ∧ 𝑏𝑏)) → 𝑐 ∈ (𝑏 ∪ {𝑐}))
55 sorpssi 7458 . . . . . . . . . . . 12 (( [] Or (𝑏 ∪ {𝑐}) ∧ ( 𝑏 ∈ (𝑏 ∪ {𝑐}) ∧ 𝑐 ∈ (𝑏 ∪ {𝑐}))) → ( 𝑏𝑐𝑐 𝑏))
5649, 51, 54, 55syl12anc 834 . . . . . . . . . . 11 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ (𝑏 ≠ ∅ ∧ 𝑏𝑏)) → ( 𝑏𝑐𝑐 𝑏))
57 ssequn1 4159 . . . . . . . . . . . . . 14 ( 𝑏𝑐 ↔ ( 𝑏𝑐) = 𝑐)
5853a1i 11 . . . . . . . . . . . . . . 15 ( 𝑏𝑏𝑐 ∈ (𝑏 ∪ {𝑐}))
59 eleq1 2903 . . . . . . . . . . . . . . 15 (( 𝑏𝑐) = 𝑐 → (( 𝑏𝑐) ∈ (𝑏 ∪ {𝑐}) ↔ 𝑐 ∈ (𝑏 ∪ {𝑐})))
6058, 59syl5ibr 248 . . . . . . . . . . . . . 14 (( 𝑏𝑐) = 𝑐 → ( 𝑏𝑏 → ( 𝑏𝑐) ∈ (𝑏 ∪ {𝑐})))
6157, 60sylbi 219 . . . . . . . . . . . . 13 ( 𝑏𝑐 → ( 𝑏𝑏 → ( 𝑏𝑐) ∈ (𝑏 ∪ {𝑐})))
6261impcom 410 . . . . . . . . . . . 12 (( 𝑏𝑏 𝑏𝑐) → ( 𝑏𝑐) ∈ (𝑏 ∪ {𝑐}))
63 uncom 4132 . . . . . . . . . . . . 13 ( 𝑏𝑐) = (𝑐 𝑏)
64 ssequn1 4159 . . . . . . . . . . . . . . 15 (𝑐 𝑏 ↔ (𝑐 𝑏) = 𝑏)
65 eleq1 2903 . . . . . . . . . . . . . . . 16 ((𝑐 𝑏) = 𝑏 → ((𝑐 𝑏) ∈ (𝑏 ∪ {𝑐}) ↔ 𝑏 ∈ (𝑏 ∪ {𝑐})))
6650, 65syl5ibr 248 . . . . . . . . . . . . . . 15 ((𝑐 𝑏) = 𝑏 → ( 𝑏𝑏 → (𝑐 𝑏) ∈ (𝑏 ∪ {𝑐})))
6764, 66sylbi 219 . . . . . . . . . . . . . 14 (𝑐 𝑏 → ( 𝑏𝑏 → (𝑐 𝑏) ∈ (𝑏 ∪ {𝑐})))
6867impcom 410 . . . . . . . . . . . . 13 (( 𝑏𝑏𝑐 𝑏) → (𝑐 𝑏) ∈ (𝑏 ∪ {𝑐}))
6963, 68eqeltrid 2920 . . . . . . . . . . . 12 (( 𝑏𝑏𝑐 𝑏) → ( 𝑏𝑐) ∈ (𝑏 ∪ {𝑐}))
7062, 69jaodan 954 . . . . . . . . . . 11 (( 𝑏𝑏 ∧ ( 𝑏𝑐𝑐 𝑏)) → ( 𝑏𝑐) ∈ (𝑏 ∪ {𝑐}))
7148, 56, 70syl2anc 586 . . . . . . . . . 10 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ (𝑏 ≠ ∅ ∧ 𝑏𝑏)) → ( 𝑏𝑐) ∈ (𝑏 ∪ {𝑐}))
7247, 71eqeltrid 2920 . . . . . . . . 9 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ (𝑏 ≠ ∅ ∧ 𝑏𝑏)) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐}))
7372expr 459 . . . . . . . 8 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ 𝑏 ≠ ∅) → ( 𝑏𝑏 (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))
7444, 73embantd 59 . . . . . . 7 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ 𝑏 ≠ ∅) → (( [] Or 𝑏 𝑏𝑏) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))
7540, 74embantd 59 . . . . . 6 (((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) ∧ 𝑏 ≠ ∅) → ((𝑏 ≠ ∅ → ( [] Or 𝑏 𝑏𝑏)) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))
7639, 75pm2.61dane 3107 . . . . 5 ((𝑏 ∈ Fin ∧ [] Or (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ≠ ∅) → ((𝑏 ≠ ∅ → ( [] Or 𝑏 𝑏𝑏)) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))
77763exp 1115 . . . 4 (𝑏 ∈ Fin → ( [] Or (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ≠ ∅ → ((𝑏 ≠ ∅ → ( [] Or 𝑏 𝑏𝑏)) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))))
7877com24 95 . . 3 (𝑏 ∈ Fin → ((𝑏 ≠ ∅ → ( [] Or 𝑏 𝑏𝑏)) → ((𝑏 ∪ {𝑐}) ≠ ∅ → ( [] Or (𝑏 ∪ {𝑐}) → (𝑏 ∪ {𝑐}) ∈ (𝑏 ∪ {𝑐})))))
794, 11, 18, 25, 2, 78findcard2 8761 . 2 (𝐴 ∈ Fin → (𝐴 ≠ ∅ → ( [] Or 𝐴 𝐴𝐴)))
80793imp21 1110 1 ((𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ∧ [] Or 𝐴) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1536  wtru 1537  wcel 2113  wne 3019  cun 3937  wss 3939  c0 4294  {csn 4570   cuni 4841   Or wor 5476   [] crpss 7451  Fincfn 8512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-rpss 7452  df-om 7584  df-1o 8105  df-er 8292  df-en 8513  df-fin 8516
This theorem is referenced by:  fin1a2lem11  9835  pgpfac1lem5  19204
  Copyright terms: Public domain W3C validator