Step | Hyp | Ref
| Expression |
1 | | oveq1 7171 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝑥 ↑ (𝐶 · 𝑋)) = (0 ↑ (𝐶 · 𝑋))) |
2 | | oveq1 7171 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑥𝐸𝐶) = (0𝐸𝐶)) |
3 | 2 | oveq1d 7179 |
. . . . . . 7
⊢ (𝑥 = 0 → ((𝑥𝐸𝐶) · 𝑋) = ((0𝐸𝐶) · 𝑋)) |
4 | 1, 3 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 0 → ((𝑥 ↑ (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (0 ↑ (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))) |
5 | 4 | imbi2d 344 |
. . . . 5
⊢ (𝑥 = 0 → ((((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 ↑ (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (0 ↑ (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋)))) |
6 | | oveq1 7171 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ↑ (𝐶 · 𝑋)) = (𝑦 ↑ (𝐶 · 𝑋))) |
7 | | oveq1 7171 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥𝐸𝐶) = (𝑦𝐸𝐶)) |
8 | 7 | oveq1d 7179 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑦𝐸𝐶) · 𝑋)) |
9 | 6, 8 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 ↑ (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑦 ↑ (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋))) |
10 | 9 | imbi2d 344 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 ↑ (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 ↑ (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)))) |
11 | | oveq1 7171 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ↑ (𝐶 · 𝑋)) = ((𝑦 + 1) ↑ (𝐶 · 𝑋))) |
12 | | oveq1 7171 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (𝑥𝐸𝐶) = ((𝑦 + 1)𝐸𝐶)) |
13 | 12 | oveq1d 7179 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋)) |
14 | 11, 13 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 ↑ (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ ((𝑦 + 1) ↑ (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))) |
15 | 14 | imbi2d 344 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 ↑ (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) ↑ (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)))) |
16 | | oveq1 7171 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝑥 ↑ (𝐶 · 𝑋)) = (𝑁 ↑ (𝐶 · 𝑋))) |
17 | | oveq1 7171 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (𝑥𝐸𝐶) = (𝑁𝐸𝐶)) |
18 | 17 | oveq1d 7179 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑁𝐸𝐶) · 𝑋)) |
19 | 16, 18 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝑥 ↑ (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))) |
20 | 19 | imbi2d 344 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 ↑ (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))) |
21 | | simpr 488 |
. . . . . . 7
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod) |
22 | | simpr 488 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
23 | 22 | adantr 484 |
. . . . . . 7
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → 𝑋 ∈ 𝑉) |
24 | | lmodvsmmulgdi.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
25 | | lmodvsmmulgdi.f |
. . . . . . . 8
⊢ 𝐹 = (Scalar‘𝑊) |
26 | | lmodvsmmulgdi.s |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑊) |
27 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝐹) = (0g‘𝐹) |
28 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘𝑊) = (0g‘𝑊) |
29 | 24, 25, 26, 27, 28 | lmod0vs 19779 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((0g‘𝐹) · 𝑋) = (0g‘𝑊)) |
30 | 21, 23, 29 | syl2anc 587 |
. . . . . 6
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) →
((0g‘𝐹)
·
𝑋) =
(0g‘𝑊)) |
31 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝐶 ∈ 𝐾) |
32 | 31 | adantr 484 |
. . . . . . . 8
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → 𝐶 ∈ 𝐾) |
33 | | lmodvsmmulgdi.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝐹) |
34 | | lmodvsmmulgdi.e |
. . . . . . . . 9
⊢ 𝐸 = (.g‘𝐹) |
35 | 33, 27, 34 | mulg0 18342 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝐾 → (0𝐸𝐶) = (0g‘𝐹)) |
36 | 32, 35 | syl 17 |
. . . . . . 7
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (0𝐸𝐶) = (0g‘𝐹)) |
37 | 36 | oveq1d 7179 |
. . . . . 6
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → ((0𝐸𝐶) · 𝑋) = ((0g‘𝐹) · 𝑋)) |
38 | 24, 25, 26, 33 | lmodvscl 19763 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐶 · 𝑋) ∈ 𝑉) |
39 | 21, 32, 23, 38 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝐶 · 𝑋) ∈ 𝑉) |
40 | | lmodvsmmulgdi.p |
. . . . . . . 8
⊢ ↑ =
(.g‘𝑊) |
41 | 24, 28, 40 | mulg0 18342 |
. . . . . . 7
⊢ ((𝐶 · 𝑋) ∈ 𝑉 → (0 ↑ (𝐶 · 𝑋)) = (0g‘𝑊)) |
42 | 39, 41 | syl 17 |
. . . . . 6
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (0 ↑ (𝐶 · 𝑋)) = (0g‘𝑊)) |
43 | 30, 37, 42 | 3eqtr4rd 2784 |
. . . . 5
⊢ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (0 ↑ (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋)) |
44 | | lmodgrp 19753 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
45 | 44 | grpmndd 18224 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Mnd) |
46 | 45 | ad2antll 729 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd) |
47 | | simpl 486 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0) |
48 | 39 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → (𝐶 · 𝑋) ∈ 𝑉) |
49 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝑊) = (+g‘𝑊) |
50 | 24, 40, 49 | mulgnn0p1 18350 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ (𝐶 · 𝑋) ∈ 𝑉) → ((𝑦 + 1) ↑ (𝐶 · 𝑋)) = ((𝑦 ↑ (𝐶 · 𝑋))(+g‘𝑊)(𝐶 · 𝑋))) |
51 | 46, 47, 48, 50 | syl3anc 1372 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) ↑ (𝐶 · 𝑋)) = ((𝑦 ↑ (𝐶 · 𝑋))(+g‘𝑊)(𝐶 · 𝑋))) |
52 | 51 | adantr 484 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 ↑ (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) ↑ (𝐶 · 𝑋)) = ((𝑦 ↑ (𝐶 · 𝑋))(+g‘𝑊)(𝐶 · 𝑋))) |
53 | | oveq1 7171 |
. . . . . . . . 9
⊢ ((𝑦 ↑ (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 ↑ (𝐶 · 𝑋))(+g‘𝑊)(𝐶 · 𝑋)) = (((𝑦𝐸𝐶) · 𝑋)(+g‘𝑊)(𝐶 · 𝑋))) |
54 | 21 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod) |
55 | 25 | lmodring 19754 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
56 | | ringmnd 19419 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ Ring → 𝐹 ∈ Mnd) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Mnd) |
58 | 57 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd) |
59 | | simprll 779 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → 𝐶 ∈ 𝐾) |
60 | 33, 34 | mulgnn0cl 18355 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝐶 ∈ 𝐾) → (𝑦𝐸𝐶) ∈ 𝐾) |
61 | 58, 47, 59, 60 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝐶) ∈ 𝐾) |
62 | 23 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋 ∈ 𝑉) |
63 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝐹) = (+g‘𝐹) |
64 | 24, 49, 25, 26, 33, 63 | lmodvsdir 19770 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝐶) ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → (((𝑦𝐸𝐶)(+g‘𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g‘𝑊)(𝐶 · 𝑋))) |
65 | 54, 61, 59, 62, 64 | syl13anc 1373 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g‘𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g‘𝑊)(𝐶 · 𝑋))) |
66 | 33, 34, 63 | mulgnn0p1 18350 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝐶 ∈ 𝐾) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g‘𝐹)𝐶)) |
67 | 58, 47, 59, 66 | syl3anc 1372 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g‘𝐹)𝐶)) |
68 | 67 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝐶)(+g‘𝐹)𝐶) = ((𝑦 + 1)𝐸𝐶)) |
69 | 68 | oveq1d 7179 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g‘𝐹)𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋)) |
70 | 65, 69 | eqtr3d 2775 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶) · 𝑋)(+g‘𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)) |
71 | 53, 70 | sylan9eqr 2795 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 ↑ (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 ↑ (𝐶 · 𝑋))(+g‘𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)) |
72 | 52, 71 | eqtrd 2773 |
. . . . . . 7
⊢ (((𝑦 ∈ ℕ0
∧ ((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 ↑ (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) ↑ (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)) |
73 | 72 | exp31 423 |
. . . . . 6
⊢ (𝑦 ∈ ℕ0
→ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 ↑ (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 + 1) ↑ (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)))) |
74 | 73 | a2d 29 |
. . . . 5
⊢ (𝑦 ∈ ℕ0
→ ((((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 ↑ (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) ↑ (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)))) |
75 | 5, 10, 15, 20, 43, 74 | nn0ind 12151 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (((𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))) |
76 | 75 | exp4c 436 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝐶 ∈ 𝐾 → (𝑋 ∈ 𝑉 → (𝑊 ∈ LMod → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))))) |
77 | 76 | 3imp21 1115 |
. 2
⊢ ((𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝑊 ∈ LMod → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))) |
78 | 77 | impcom 411 |
1
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑁 ↑ (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)) |