MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsmmulgdi Structured version   Visualization version   GIF version

Theorem lmodvsmmulgdi 20449
Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmmulgdi.v 𝑉 = (Base‘𝑊)
lmodvsmmulgdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmmulgdi.s · = ( ·𝑠𝑊)
lmodvsmmulgdi.k 𝐾 = (Base‘𝐹)
lmodvsmmulgdi.p = (.g𝑊)
lmodvsmmulgdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmmulgdi ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))

Proof of Theorem lmodvsmmulgdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7395 . . . . . . 7 (𝑥 = 0 → (𝑥 (𝐶 · 𝑋)) = (0 (𝐶 · 𝑋)))
2 oveq1 7395 . . . . . . . 8 (𝑥 = 0 → (𝑥𝐸𝐶) = (0𝐸𝐶))
32oveq1d 7403 . . . . . . 7 (𝑥 = 0 → ((𝑥𝐸𝐶) · 𝑋) = ((0𝐸𝐶) · 𝑋))
41, 3eqeq12d 2747 . . . . . 6 (𝑥 = 0 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋)))
54imbi2d 340 . . . . 5 (𝑥 = 0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))))
6 oveq1 7395 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 (𝐶 · 𝑋)) = (𝑦 (𝐶 · 𝑋)))
7 oveq1 7395 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐸𝐶) = (𝑦𝐸𝐶))
87oveq1d 7403 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑦𝐸𝐶) · 𝑋))
96, 8eqeq12d 2747 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)))
109imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋))))
11 oveq1 7395 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 (𝐶 · 𝑋)) = ((𝑦 + 1) (𝐶 · 𝑋)))
12 oveq1 7395 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝐶) = ((𝑦 + 1)𝐸𝐶))
1312oveq1d 7403 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
1411, 13eqeq12d 2747 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)))
1514imbi2d 340 . . . . 5 (𝑥 = (𝑦 + 1) → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
16 oveq1 7395 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 (𝐶 · 𝑋)) = (𝑁 (𝐶 · 𝑋)))
17 oveq1 7395 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥𝐸𝐶) = (𝑁𝐸𝐶))
1817oveq1d 7403 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑁𝐸𝐶) · 𝑋))
1916, 18eqeq12d 2747 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
2019imbi2d 340 . . . . 5 (𝑥 = 𝑁 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))))
21 simpr 485 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
22 simpr 485 . . . . . . . 8 ((𝐶𝐾𝑋𝑉) → 𝑋𝑉)
2322adantr 481 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
24 lmodvsmmulgdi.v . . . . . . . 8 𝑉 = (Base‘𝑊)
25 lmodvsmmulgdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
26 lmodvsmmulgdi.s . . . . . . . 8 · = ( ·𝑠𝑊)
27 eqid 2731 . . . . . . . 8 (0g𝐹) = (0g𝐹)
28 eqid 2731 . . . . . . . 8 (0g𝑊) = (0g𝑊)
2924, 25, 26, 27, 28lmod0vs 20447 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
3021, 23, 29syl2anc 584 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
31 simpl 483 . . . . . . . . 9 ((𝐶𝐾𝑋𝑉) → 𝐶𝐾)
3231adantr 481 . . . . . . . 8 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝐶𝐾)
33 lmodvsmmulgdi.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
34 lmodvsmmulgdi.e . . . . . . . . 9 𝐸 = (.g𝐹)
3533, 27, 34mulg0 18924 . . . . . . . 8 (𝐶𝐾 → (0𝐸𝐶) = (0g𝐹))
3632, 35syl 17 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0𝐸𝐶) = (0g𝐹))
3736oveq1d 7403 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0𝐸𝐶) · 𝑋) = ((0g𝐹) · 𝑋))
3824, 25, 26, 33lmodvscl 20431 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑋𝑉) → (𝐶 · 𝑋) ∈ 𝑉)
3921, 32, 23, 38syl3anc 1371 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝐶 · 𝑋) ∈ 𝑉)
40 lmodvsmmulgdi.p . . . . . . . 8 = (.g𝑊)
4124, 28, 40mulg0 18924 . . . . . . 7 ((𝐶 · 𝑋) ∈ 𝑉 → (0 (𝐶 · 𝑋)) = (0g𝑊))
4239, 41syl 17 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = (0g𝑊))
4330, 37, 423eqtr4rd 2782 . . . . 5 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))
44 lmodgrp 20420 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
4544grpmndd 18802 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
4645ad2antll 727 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
47 simpl 483 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
4839adantl 482 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝐶 · 𝑋) ∈ 𝑉)
49 eqid 2731 . . . . . . . . . . 11 (+g𝑊) = (+g𝑊)
5024, 40, 49mulgnn0p1 18932 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐶 · 𝑋) ∈ 𝑉) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5146, 47, 48, 50syl3anc 1371 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5251adantr 481 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
53 oveq1 7395 . . . . . . . . 9 ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
5421adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
5525lmodring 20421 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
56 ringmnd 20019 . . . . . . . . . . . . . 14 (𝐹 ∈ Ring → 𝐹 ∈ Mnd)
5755, 56syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
5857ad2antll 727 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
59 simprll 777 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐶𝐾)
6033, 34, 58, 47, 59mulgnn0cld 18942 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝐶) ∈ 𝐾)
6123adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
62 eqid 2731 . . . . . . . . . . . 12 (+g𝐹) = (+g𝐹)
6324, 49, 25, 26, 33, 62lmodvsdir 20438 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝐶) ∈ 𝐾𝐶𝐾𝑋𝑉)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6454, 60, 59, 61, 63syl13anc 1372 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6533, 34, 62mulgnn0p1 18932 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐶𝐾) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
6658, 47, 59, 65syl3anc 1371 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
6766eqcomd 2737 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝐶)(+g𝐹)𝐶) = ((𝑦 + 1)𝐸𝐶))
6867oveq1d 7403 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
6964, 68eqtr3d 2773 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7053, 69sylan9eqr 2793 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7152, 70eqtrd 2771 . . . . . . 7 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7271exp31 420 . . . . . 6 (𝑦 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
7372a2d 29 . . . . 5 (𝑦 ∈ ℕ0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
745, 10, 15, 20, 43, 73nn0ind 12634 . . . 4 (𝑁 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7574exp4c 433 . . 3 (𝑁 ∈ ℕ0 → (𝐶𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))))
76753imp21 1114 . 2 ((𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7776impcom 408 1 ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6527  (class class class)co 7388  0cc0 11087  1c1 11088   + caddc 11090  0cn0 12449  Basecbs 17121  +gcplusg 17174  Scalarcsca 17177   ·𝑠 cvsca 17178  0gc0g 17362  Mndcmnd 18597  .gcmg 18917  Ringcrg 20009  LModclmod 20413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5287  ax-nul 5294  ax-pow 5351  ax-pr 5415  ax-un 7703  ax-cnex 11143  ax-resscn 11144  ax-1cn 11145  ax-icn 11146  ax-addcl 11147  ax-addrcl 11148  ax-mulcl 11149  ax-mulrcl 11150  ax-mulcom 11151  ax-addass 11152  ax-mulass 11153  ax-distr 11154  ax-i2m1 11155  ax-1ne0 11156  ax-1rid 11157  ax-rnegex 11158  ax-rrecex 11159  ax-cnre 11160  ax-pre-lttri 11161  ax-pre-lttrn 11162  ax-pre-ltadd 11163  ax-pre-mulgt0 11164
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3374  df-reu 3375  df-rab 3429  df-v 3471  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4314  df-if 4518  df-pw 4593  df-sn 4618  df-pr 4620  df-op 4624  df-uni 4897  df-iun 4987  df-br 5137  df-opab 5199  df-mpt 5220  df-tr 5254  df-id 5562  df-eprel 5568  df-po 5576  df-so 5577  df-fr 5619  df-we 5621  df-xp 5670  df-rel 5671  df-cnv 5672  df-co 5673  df-dm 5674  df-rn 5675  df-res 5676  df-ima 5677  df-pred 6284  df-ord 6351  df-on 6352  df-lim 6353  df-suc 6354  df-iota 6479  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7344  df-ov 7391  df-oprab 7392  df-mpo 7393  df-om 7834  df-1st 7952  df-2nd 7953  df-frecs 8243  df-wrecs 8274  df-recs 8348  df-rdg 8387  df-er 8681  df-en 8918  df-dom 8919  df-sdom 8920  df-pnf 11227  df-mnf 11228  df-xr 11229  df-ltxr 11230  df-le 11231  df-sub 11423  df-neg 11424  df-nn 12190  df-n0 12450  df-z 12536  df-uz 12800  df-fz 13462  df-seq 13944  df-0g 17364  df-mgm 18538  df-sgrp 18587  df-mnd 18598  df-grp 18792  df-mulg 18918  df-ring 20011  df-lmod 20415
This theorem is referenced by:  chpscmatgsummon  22269  asclmulg  32415
  Copyright terms: Public domain W3C validator