MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsmmulgdi Structured version   Visualization version   GIF version

Theorem lmodvsmmulgdi 19290
Description: Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmmulgdi.v 𝑉 = (Base‘𝑊)
lmodvsmmulgdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmmulgdi.s · = ( ·𝑠𝑊)
lmodvsmmulgdi.k 𝐾 = (Base‘𝐹)
lmodvsmmulgdi.p = (.g𝑊)
lmodvsmmulgdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmmulgdi ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))

Proof of Theorem lmodvsmmulgdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6929 . . . . . . . 8 (𝑥 = 0 → (𝑥 (𝐶 · 𝑋)) = (0 (𝐶 · 𝑋)))
2 oveq1 6929 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝐸𝐶) = (0𝐸𝐶))
32oveq1d 6937 . . . . . . . 8 (𝑥 = 0 → ((𝑥𝐸𝐶) · 𝑋) = ((0𝐸𝐶) · 𝑋))
41, 3eqeq12d 2792 . . . . . . 7 (𝑥 = 0 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋)))
54imbi2d 332 . . . . . 6 (𝑥 = 0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))))
6 oveq1 6929 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 (𝐶 · 𝑋)) = (𝑦 (𝐶 · 𝑋)))
7 oveq1 6929 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐸𝐶) = (𝑦𝐸𝐶))
87oveq1d 6937 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑦𝐸𝐶) · 𝑋))
96, 8eqeq12d 2792 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)))
109imbi2d 332 . . . . . 6 (𝑥 = 𝑦 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋))))
11 oveq1 6929 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑥 (𝐶 · 𝑋)) = ((𝑦 + 1) (𝐶 · 𝑋)))
12 oveq1 6929 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝐶) = ((𝑦 + 1)𝐸𝐶))
1312oveq1d 6937 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
1411, 13eqeq12d 2792 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋)))
1514imbi2d 332 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
16 oveq1 6929 . . . . . . . 8 (𝑥 = 𝑁 → (𝑥 (𝐶 · 𝑋)) = (𝑁 (𝐶 · 𝑋)))
17 oveq1 6929 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥𝐸𝐶) = (𝑁𝐸𝐶))
1817oveq1d 6937 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥𝐸𝐶) · 𝑋) = ((𝑁𝐸𝐶) · 𝑋))
1916, 18eqeq12d 2792 . . . . . . 7 (𝑥 = 𝑁 → ((𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋) ↔ (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
2019imbi2d 332 . . . . . 6 (𝑥 = 𝑁 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑥 (𝐶 · 𝑋)) = ((𝑥𝐸𝐶) · 𝑋)) ↔ (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))))
21 simpr 479 . . . . . . . 8 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
22 simpr 479 . . . . . . . . 9 ((𝐶𝐾𝑋𝑉) → 𝑋𝑉)
2322adantr 474 . . . . . . . 8 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
24 lmodvsmmulgdi.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
25 lmodvsmmulgdi.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
26 lmodvsmmulgdi.s . . . . . . . . 9 · = ( ·𝑠𝑊)
27 eqid 2777 . . . . . . . . 9 (0g𝐹) = (0g𝐹)
28 eqid 2777 . . . . . . . . 9 (0g𝑊) = (0g𝑊)
2924, 25, 26, 27, 28lmod0vs 19288 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
3021, 23, 29syl2anc 579 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
31 simpl 476 . . . . . . . . . 10 ((𝐶𝐾𝑋𝑉) → 𝐶𝐾)
3231adantr 474 . . . . . . . . 9 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝐶𝐾)
33 lmodvsmmulgdi.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
34 lmodvsmmulgdi.e . . . . . . . . . 10 𝐸 = (.g𝐹)
3533, 27, 34mulg0 17933 . . . . . . . . 9 (𝐶𝐾 → (0𝐸𝐶) = (0g𝐹))
3632, 35syl 17 . . . . . . . 8 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0𝐸𝐶) = (0g𝐹))
3736oveq1d 6937 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0𝐸𝐶) · 𝑋) = ((0g𝐹) · 𝑋))
3824, 25, 26, 33lmodvscl 19272 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐶𝐾𝑋𝑉) → (𝐶 · 𝑋) ∈ 𝑉)
3921, 32, 23, 38syl3anc 1439 . . . . . . . 8 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝐶 · 𝑋) ∈ 𝑉)
40 lmodvsmmulgdi.p . . . . . . . . 9 = (.g𝑊)
4124, 28, 40mulg0 17933 . . . . . . . 8 ((𝐶 · 𝑋) ∈ 𝑉 → (0 (𝐶 · 𝑋)) = (0g𝑊))
4239, 41syl 17 . . . . . . 7 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = (0g𝑊))
4330, 37, 423eqtr4rd 2824 . . . . . 6 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 (𝐶 · 𝑋)) = ((0𝐸𝐶) · 𝑋))
44 lmodgrp 19262 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
45 grpmnd 17816 . . . . . . . . . . . . . 14 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
4644, 45syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
4746adantl 475 . . . . . . . . . . . 12 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ Mnd)
4847adantl 475 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
49 simpl 476 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
5039adantl 475 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝐶 · 𝑋) ∈ 𝑉)
51 eqid 2777 . . . . . . . . . . . 12 (+g𝑊) = (+g𝑊)
5224, 40, 51mulgnn0p1 17939 . . . . . . . . . . 11 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐶 · 𝑋) ∈ 𝑉) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5348, 49, 50, 52syl3anc 1439 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
5453adantr 474 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)))
55 oveq1 6929 . . . . . . . . . 10 ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
5621adantl 475 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
5725lmodring 19263 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
58 ringmnd 18943 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Ring → 𝐹 ∈ Mnd)
5957, 58syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
6059adantl 475 . . . . . . . . . . . . . 14 (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝐹 ∈ Mnd)
6160adantl 475 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
62 simprll 769 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐶𝐾)
6333, 34mulgnn0cl 17944 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐶𝐾) → (𝑦𝐸𝐶) ∈ 𝐾)
6461, 49, 62, 63syl3anc 1439 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝐶) ∈ 𝐾)
6523adantl 475 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
66 eqid 2777 . . . . . . . . . . . . 13 (+g𝐹) = (+g𝐹)
6724, 51, 25, 26, 33, 66lmodvsdir 19279 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝐶) ∈ 𝐾𝐶𝐾𝑋𝑉)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6856, 64, 62, 65, 67syl13anc 1440 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)))
6933, 34, 66mulgnn0p1 17939 . . . . . . . . . . . . . 14 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐶𝐾) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
7061, 49, 62, 69syl3anc 1439 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝐶) = ((𝑦𝐸𝐶)(+g𝐹)𝐶))
7170eqcomd 2783 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝐶)(+g𝐹)𝐶) = ((𝑦 + 1)𝐸𝐶))
7271oveq1d 6937 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶)(+g𝐹)𝐶) · 𝑋) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7368, 72eqtr3d 2815 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝐶) · 𝑋)(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7455, 73sylan9eqr 2835 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 (𝐶 · 𝑋))(+g𝑊)(𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7554, 74eqtrd 2813 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))
7675exp31 412 . . . . . . 7 (𝑦 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
7776a2d 29 . . . . . 6 (𝑦 ∈ ℕ0 → ((((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑦 (𝐶 · 𝑋)) = ((𝑦𝐸𝐶) · 𝑋)) → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑦 + 1) (𝐶 · 𝑋)) = (((𝑦 + 1)𝐸𝐶) · 𝑋))))
785, 10, 15, 20, 43, 77nn0ind 11824 . . . . 5 (𝑁 ∈ ℕ0 → (((𝐶𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
7978exp4c 425 . . . 4 (𝑁 ∈ ℕ0 → (𝐶𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))))
8079com12 32 . . 3 (𝐶𝐾 → (𝑁 ∈ ℕ0 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))))
81803imp 1098 . 2 ((𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋)))
8281impcom 398 1 ((𝑊 ∈ LMod ∧ (𝐶𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑁 (𝐶 · 𝑋)) = ((𝑁𝐸𝐶) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922  0cc0 10272  1c1 10273   + caddc 10275  0cn0 11642  Basecbs 16255  +gcplusg 16338  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486  Mndcmnd 17680  Grpcgrp 17809  .gcmg 17927  Ringcrg 18934  LModclmod 19255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-seq 13120  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-mulg 17928  df-ring 18936  df-lmod 19257
This theorem is referenced by:  chpscmatgsummon  21057
  Copyright terms: Public domain W3C validator