Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2 Structured version   Visualization version   GIF version

Theorem fmtnofac2 47493
Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 47494: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5150 . . . . . 6 (𝑥 = 1 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 1 ∥ (FermatNo‘𝑁)))
21anbi2d 630 . . . . 5 (𝑥 = 1 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁))))
3 eqeq1 2738 . . . . . 6 (𝑥 = 1 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
43rexbidv 3176 . . . . 5 (𝑥 = 1 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
52, 4imbi12d 344 . . . 4 (𝑥 = 1 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
6 breq1 5150 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑦 ∥ (FermatNo‘𝑁)))
76anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁))))
8 eqeq1 2738 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
98rexbidv 3176 . . . . 5 (𝑥 = 𝑦 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
107, 9imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
11 breq1 5150 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑧 ∥ (FermatNo‘𝑁)))
1211anbi2d 630 . . . . 5 (𝑥 = 𝑧 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁))))
13 eqeq1 2738 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413rexbidv 3176 . . . . 5 (𝑥 = 𝑧 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1512, 14imbi12d 344 . . . 4 (𝑥 = 𝑧 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
16 breq1 5150 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∥ (FermatNo‘𝑁) ↔ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)))
1716anbi2d 630 . . . . 5 (𝑥 = (𝑦 · 𝑧) → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁))))
18 eqeq1 2738 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1918rexbidv 3176 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2017, 19imbi12d 344 . . . 4 (𝑥 = (𝑦 · 𝑧) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
21 breq1 5150 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ (FermatNo‘𝑁)))
2221anbi2d 630 . . . . 5 (𝑥 = 𝑀 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁))))
23 eqeq1 2738 . . . . . 6 (𝑥 = 𝑀 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2423rexbidv 3176 . . . . 5 (𝑥 = 𝑀 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2522, 24imbi12d 344 . . . 4 (𝑥 = 𝑀 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
26 0nn0 12538 . . . . . . 7 0 ∈ ℕ0
2726a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 0 ∈ ℕ0)
28 oveq1 7437 . . . . . . . . 9 (𝑘 = 0 → (𝑘 · (2↑(𝑁 + 2))) = (0 · (2↑(𝑁 + 2))))
2928oveq1d 7445 . . . . . . . 8 (𝑘 = 0 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((0 · (2↑(𝑁 + 2))) + 1))
3029eqeq2d 2745 . . . . . . 7 (𝑘 = 0 → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
3130adantl 481 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = 0) → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
32 2nn0 12540 . . . . . . . . . . . 12 2 ∈ ℕ0
3332a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
34 eluzge2nn0 12926 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
3534, 33nn0addcld 12588 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3633, 35nn0expcld 14281 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3736nn0cnd 12586 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
3837mul02d 11456 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (0 · (2↑(𝑁 + 2))) = 0)
3938oveq1d 7445 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((0 · (2↑(𝑁 + 2))) + 1) = (0 + 1))
40 0p1e1 12385 . . . . . . 7 (0 + 1) = 1
4139, 40eqtr2di 2791 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 1 = ((0 · (2↑(𝑁 + 2))) + 1))
4227, 31, 41rspcedvd 3623 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
4342adantr 480 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
44 simpl 482 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → 𝑁 ∈ (ℤ‘2))
4544adantl 481 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ (ℤ‘2))
46 simpl 482 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∈ ℙ)
47 simprr 773 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∥ (FermatNo‘𝑁))
48 nnssnn0 12526 . . . . . . 7 ℕ ⊆ ℕ0
49 fmtnoprmfac2 47491 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
50 ssrexv 4064 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5148, 49, 50mpsyl 68 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5245, 46, 47, 51syl3anc 1370 . . . . 5 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5352ex 412 . . . 4 (𝑥 ∈ ℙ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
54 fmtnofac2lem 47492 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
555, 10, 15, 20, 25, 43, 53, 54prmind 16719 . . 3 (𝑀 ∈ ℕ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5655expd 415 . 2 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
57563imp21 1113 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wrex 3067  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cn 12263  2c2 12318  0cn0 12523  cuz 12875  cexp 14098  cdvds 16286  cprime 16704  FermatNocfmtno 47451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-ioo 13387  df-ico 13389  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-prod 15936  df-dvds 16287  df-gcd 16528  df-prm 16705  df-odz 16798  df-phi 16799  df-pc 16870  df-lgs 27353  df-fmtno 47452
This theorem is referenced by:  fmtnofac1  47494
  Copyright terms: Public domain W3C validator