Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2 Structured version   Visualization version   GIF version

Theorem fmtnofac2 43563
Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 43564: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5066 . . . . . 6 (𝑥 = 1 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 1 ∥ (FermatNo‘𝑁)))
21anbi2d 628 . . . . 5 (𝑥 = 1 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁))))
3 eqeq1 2830 . . . . . 6 (𝑥 = 1 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
43rexbidv 3302 . . . . 5 (𝑥 = 1 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
52, 4imbi12d 346 . . . 4 (𝑥 = 1 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
6 breq1 5066 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑦 ∥ (FermatNo‘𝑁)))
76anbi2d 628 . . . . 5 (𝑥 = 𝑦 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁))))
8 eqeq1 2830 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
98rexbidv 3302 . . . . 5 (𝑥 = 𝑦 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
107, 9imbi12d 346 . . . 4 (𝑥 = 𝑦 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
11 breq1 5066 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑧 ∥ (FermatNo‘𝑁)))
1211anbi2d 628 . . . . 5 (𝑥 = 𝑧 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁))))
13 eqeq1 2830 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413rexbidv 3302 . . . . 5 (𝑥 = 𝑧 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1512, 14imbi12d 346 . . . 4 (𝑥 = 𝑧 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
16 breq1 5066 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∥ (FermatNo‘𝑁) ↔ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)))
1716anbi2d 628 . . . . 5 (𝑥 = (𝑦 · 𝑧) → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁))))
18 eqeq1 2830 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1918rexbidv 3302 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2017, 19imbi12d 346 . . . 4 (𝑥 = (𝑦 · 𝑧) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
21 breq1 5066 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ (FermatNo‘𝑁)))
2221anbi2d 628 . . . . 5 (𝑥 = 𝑀 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁))))
23 eqeq1 2830 . . . . . 6 (𝑥 = 𝑀 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2423rexbidv 3302 . . . . 5 (𝑥 = 𝑀 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2522, 24imbi12d 346 . . . 4 (𝑥 = 𝑀 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
26 0nn0 11901 . . . . . . 7 0 ∈ ℕ0
2726a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 0 ∈ ℕ0)
28 oveq1 7155 . . . . . . . . 9 (𝑘 = 0 → (𝑘 · (2↑(𝑁 + 2))) = (0 · (2↑(𝑁 + 2))))
2928oveq1d 7163 . . . . . . . 8 (𝑘 = 0 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((0 · (2↑(𝑁 + 2))) + 1))
3029eqeq2d 2837 . . . . . . 7 (𝑘 = 0 → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
3130adantl 482 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = 0) → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
32 2nn0 11903 . . . . . . . . . . . 12 2 ∈ ℕ0
3332a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
34 eluzge2nn0 12276 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
3534, 33nn0addcld 11948 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3633, 35nn0expcld 13597 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3736nn0cnd 11946 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
3837mul02d 10827 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (0 · (2↑(𝑁 + 2))) = 0)
3938oveq1d 7163 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((0 · (2↑(𝑁 + 2))) + 1) = (0 + 1))
40 0p1e1 11748 . . . . . . 7 (0 + 1) = 1
4139, 40syl6req 2878 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 1 = ((0 · (2↑(𝑁 + 2))) + 1))
4227, 31, 41rspcedvd 3630 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
4342adantr 481 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
44 simpl 483 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → 𝑁 ∈ (ℤ‘2))
4544adantl 482 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ (ℤ‘2))
46 simpl 483 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∈ ℙ)
47 simprr 769 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∥ (FermatNo‘𝑁))
48 nnssnn0 11889 . . . . . . 7 ℕ ⊆ ℕ0
49 fmtnoprmfac2 43561 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
50 ssrexv 4038 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5148, 49, 50mpsyl 68 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5245, 46, 47, 51syl3anc 1365 . . . . 5 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5352ex 413 . . . 4 (𝑥 ∈ ℙ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
54 fmtnofac2lem 43562 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
555, 10, 15, 20, 25, 43, 53, 54prmind 16020 . . 3 (𝑀 ∈ ℕ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5655expd 416 . 2 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
57563imp21 1108 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wrex 3144  wss 3940   class class class wbr 5063  cfv 6352  (class class class)co 7148  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cn 11627  2c2 11681  0cn0 11886  cuz 12232  cexp 13419  cdvds 15597  cprime 16005  FermatNocfmtno 43521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-q 12338  df-rp 12380  df-ioo 12732  df-ico 12734  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-prod 15250  df-dvds 15598  df-gcd 15834  df-prm 16006  df-odz 16092  df-phi 16093  df-pc 16164  df-lgs 25785  df-fmtno 43522
This theorem is referenced by:  fmtnofac1  43564
  Copyright terms: Public domain W3C validator