Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2 Structured version   Visualization version   GIF version

Theorem fmtnofac2 42089
Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 42090: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4812 . . . . . 6 (𝑥 = 1 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 1 ∥ (FermatNo‘𝑁)))
21anbi2d 622 . . . . 5 (𝑥 = 1 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁))))
3 eqeq1 2769 . . . . . 6 (𝑥 = 1 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
43rexbidv 3199 . . . . 5 (𝑥 = 1 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
52, 4imbi12d 335 . . . 4 (𝑥 = 1 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
6 breq1 4812 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑦 ∥ (FermatNo‘𝑁)))
76anbi2d 622 . . . . 5 (𝑥 = 𝑦 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁))))
8 eqeq1 2769 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
98rexbidv 3199 . . . . 5 (𝑥 = 𝑦 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
107, 9imbi12d 335 . . . 4 (𝑥 = 𝑦 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
11 breq1 4812 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑧 ∥ (FermatNo‘𝑁)))
1211anbi2d 622 . . . . 5 (𝑥 = 𝑧 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁))))
13 eqeq1 2769 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413rexbidv 3199 . . . . 5 (𝑥 = 𝑧 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1512, 14imbi12d 335 . . . 4 (𝑥 = 𝑧 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
16 breq1 4812 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∥ (FermatNo‘𝑁) ↔ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)))
1716anbi2d 622 . . . . 5 (𝑥 = (𝑦 · 𝑧) → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁))))
18 eqeq1 2769 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1918rexbidv 3199 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2017, 19imbi12d 335 . . . 4 (𝑥 = (𝑦 · 𝑧) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
21 breq1 4812 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ (FermatNo‘𝑁)))
2221anbi2d 622 . . . . 5 (𝑥 = 𝑀 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁))))
23 eqeq1 2769 . . . . . 6 (𝑥 = 𝑀 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2423rexbidv 3199 . . . . 5 (𝑥 = 𝑀 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2522, 24imbi12d 335 . . . 4 (𝑥 = 𝑀 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
26 0nn0 11555 . . . . . . 7 0 ∈ ℕ0
2726a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 0 ∈ ℕ0)
28 oveq1 6849 . . . . . . . . 9 (𝑘 = 0 → (𝑘 · (2↑(𝑁 + 2))) = (0 · (2↑(𝑁 + 2))))
2928oveq1d 6857 . . . . . . . 8 (𝑘 = 0 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((0 · (2↑(𝑁 + 2))) + 1))
3029eqeq2d 2775 . . . . . . 7 (𝑘 = 0 → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
3130adantl 473 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = 0) → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
32 2nn0 11557 . . . . . . . . . . . 12 2 ∈ ℕ0
3332a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
34 eluzge2nn0 11927 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
3534, 33nn0addcld 11602 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3633, 35nn0expcld 13238 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3736nn0cnd 11600 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
3837mul02d 10488 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (0 · (2↑(𝑁 + 2))) = 0)
3938oveq1d 6857 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((0 · (2↑(𝑁 + 2))) + 1) = (0 + 1))
40 0p1e1 11401 . . . . . . 7 (0 + 1) = 1
4139, 40syl6req 2816 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 1 = ((0 · (2↑(𝑁 + 2))) + 1))
4227, 31, 41rspcedvd 3468 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
4342adantr 472 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
44 simpl 474 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → 𝑁 ∈ (ℤ‘2))
4544adantl 473 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ (ℤ‘2))
46 simpl 474 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∈ ℙ)
47 simprr 789 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∥ (FermatNo‘𝑁))
48 nnssnn0 11541 . . . . . . 7 ℕ ⊆ ℕ0
49 fmtnoprmfac2 42087 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
50 ssrexv 3827 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5148, 49, 50mpsyl 68 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5245, 46, 47, 51syl3anc 1490 . . . . 5 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5352ex 401 . . . 4 (𝑥 ∈ ℙ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
54 fmtnofac2lem 42088 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
555, 10, 15, 20, 25, 43, 53, 54prmind 15681 . . 3 (𝑀 ∈ ℕ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5655expd 404 . 2 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
57563imp21 1141 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wrex 3056  wss 3732   class class class wbr 4809  cfv 6068  (class class class)co 6842  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  cn 11274  2c2 11327  0cn0 11538  cuz 11886  cexp 13067  cdvds 15267  cprime 15667  FermatNocfmtno 42047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-q 11990  df-rp 12029  df-ioo 12381  df-ico 12383  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-prod 14921  df-dvds 15268  df-gcd 15500  df-prm 15668  df-odz 15751  df-phi 15752  df-pc 15823  df-lgs 25311  df-fmtno 42048
This theorem is referenced by:  fmtnofac1  42090
  Copyright terms: Public domain W3C validator