Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2 Structured version   Visualization version   GIF version

Theorem fmtnofac2 45751
Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 45752: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5108 . . . . . 6 (𝑥 = 1 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 1 ∥ (FermatNo‘𝑁)))
21anbi2d 629 . . . . 5 (𝑥 = 1 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁))))
3 eqeq1 2740 . . . . . 6 (𝑥 = 1 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
43rexbidv 3175 . . . . 5 (𝑥 = 1 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
52, 4imbi12d 344 . . . 4 (𝑥 = 1 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
6 breq1 5108 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑦 ∥ (FermatNo‘𝑁)))
76anbi2d 629 . . . . 5 (𝑥 = 𝑦 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁))))
8 eqeq1 2740 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
98rexbidv 3175 . . . . 5 (𝑥 = 𝑦 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
107, 9imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
11 breq1 5108 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑧 ∥ (FermatNo‘𝑁)))
1211anbi2d 629 . . . . 5 (𝑥 = 𝑧 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁))))
13 eqeq1 2740 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413rexbidv 3175 . . . . 5 (𝑥 = 𝑧 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1512, 14imbi12d 344 . . . 4 (𝑥 = 𝑧 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
16 breq1 5108 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∥ (FermatNo‘𝑁) ↔ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)))
1716anbi2d 629 . . . . 5 (𝑥 = (𝑦 · 𝑧) → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁))))
18 eqeq1 2740 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1918rexbidv 3175 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2017, 19imbi12d 344 . . . 4 (𝑥 = (𝑦 · 𝑧) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
21 breq1 5108 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ (FermatNo‘𝑁)))
2221anbi2d 629 . . . . 5 (𝑥 = 𝑀 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁))))
23 eqeq1 2740 . . . . . 6 (𝑥 = 𝑀 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2423rexbidv 3175 . . . . 5 (𝑥 = 𝑀 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2522, 24imbi12d 344 . . . 4 (𝑥 = 𝑀 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
26 0nn0 12428 . . . . . . 7 0 ∈ ℕ0
2726a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 0 ∈ ℕ0)
28 oveq1 7364 . . . . . . . . 9 (𝑘 = 0 → (𝑘 · (2↑(𝑁 + 2))) = (0 · (2↑(𝑁 + 2))))
2928oveq1d 7372 . . . . . . . 8 (𝑘 = 0 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((0 · (2↑(𝑁 + 2))) + 1))
3029eqeq2d 2747 . . . . . . 7 (𝑘 = 0 → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
3130adantl 482 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = 0) → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
32 2nn0 12430 . . . . . . . . . . . 12 2 ∈ ℕ0
3332a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
34 eluzge2nn0 12812 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
3534, 33nn0addcld 12477 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3633, 35nn0expcld 14149 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3736nn0cnd 12475 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
3837mul02d 11353 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (0 · (2↑(𝑁 + 2))) = 0)
3938oveq1d 7372 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((0 · (2↑(𝑁 + 2))) + 1) = (0 + 1))
40 0p1e1 12275 . . . . . . 7 (0 + 1) = 1
4139, 40eqtr2di 2793 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 1 = ((0 · (2↑(𝑁 + 2))) + 1))
4227, 31, 41rspcedvd 3583 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
4342adantr 481 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
44 simpl 483 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → 𝑁 ∈ (ℤ‘2))
4544adantl 482 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ (ℤ‘2))
46 simpl 483 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∈ ℙ)
47 simprr 771 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∥ (FermatNo‘𝑁))
48 nnssnn0 12416 . . . . . . 7 ℕ ⊆ ℕ0
49 fmtnoprmfac2 45749 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
50 ssrexv 4011 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5148, 49, 50mpsyl 68 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5245, 46, 47, 51syl3anc 1371 . . . . 5 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5352ex 413 . . . 4 (𝑥 ∈ ℙ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
54 fmtnofac2lem 45750 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
555, 10, 15, 20, 25, 43, 53, 54prmind 16562 . . 3 (𝑀 ∈ ℕ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5655expd 416 . 2 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
57563imp21 1114 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cn 12153  2c2 12208  0cn0 12413  cuz 12763  cexp 13967  cdvds 16136  cprime 16547  FermatNocfmtno 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789  df-dvds 16137  df-gcd 16375  df-prm 16548  df-odz 16637  df-phi 16638  df-pc 16709  df-lgs 26643  df-fmtno 45710
This theorem is referenced by:  fmtnofac1  45752
  Copyright terms: Public domain W3C validator