Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnofac2 Structured version   Visualization version   GIF version

Theorem fmtnofac2 44086
Description: Divisor of Fermat number (Euler's Result refined by François Édouard Anatole Lucas), see fmtnofac1 44087: Let Fn be a Fermat number. Let m be divisor of Fn. Then m is in the form: k*2^(n+2)+1 where k is a nonnegative integer. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtnofac2 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem fmtnofac2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5033 . . . . . 6 (𝑥 = 1 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 1 ∥ (FermatNo‘𝑁)))
21anbi2d 631 . . . . 5 (𝑥 = 1 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁))))
3 eqeq1 2802 . . . . . 6 (𝑥 = 1 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
43rexbidv 3256 . . . . 5 (𝑥 = 1 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
52, 4imbi12d 348 . . . 4 (𝑥 = 1 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
6 breq1 5033 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑦 ∥ (FermatNo‘𝑁)))
76anbi2d 631 . . . . 5 (𝑥 = 𝑦 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁))))
8 eqeq1 2802 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
98rexbidv 3256 . . . . 5 (𝑥 = 𝑦 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
107, 9imbi12d 348 . . . 4 (𝑥 = 𝑦 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
11 breq1 5033 . . . . . 6 (𝑥 = 𝑧 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑧 ∥ (FermatNo‘𝑁)))
1211anbi2d 631 . . . . 5 (𝑥 = 𝑧 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁))))
13 eqeq1 2802 . . . . . 6 (𝑥 = 𝑧 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1413rexbidv 3256 . . . . 5 (𝑥 = 𝑧 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1512, 14imbi12d 348 . . . 4 (𝑥 = 𝑧 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
16 breq1 5033 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∥ (FermatNo‘𝑁) ↔ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)))
1716anbi2d 631 . . . . 5 (𝑥 = (𝑦 · 𝑧) → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁))))
18 eqeq1 2802 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
1918rexbidv 3256 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2017, 19imbi12d 348 . . . 4 (𝑥 = (𝑦 · 𝑧) → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
21 breq1 5033 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∥ (FermatNo‘𝑁) ↔ 𝑀 ∥ (FermatNo‘𝑁)))
2221anbi2d 631 . . . . 5 (𝑥 = 𝑀 → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) ↔ (𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁))))
23 eqeq1 2802 . . . . . 6 (𝑥 = 𝑀 → (𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2423rexbidv 3256 . . . . 5 (𝑥 = 𝑀 → (∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
2522, 24imbi12d 348 . . . 4 (𝑥 = 𝑀 → (((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ↔ ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
26 0nn0 11900 . . . . . . 7 0 ∈ ℕ0
2726a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 0 ∈ ℕ0)
28 oveq1 7142 . . . . . . . . 9 (𝑘 = 0 → (𝑘 · (2↑(𝑁 + 2))) = (0 · (2↑(𝑁 + 2))))
2928oveq1d 7150 . . . . . . . 8 (𝑘 = 0 → ((𝑘 · (2↑(𝑁 + 2))) + 1) = ((0 · (2↑(𝑁 + 2))) + 1))
3029eqeq2d 2809 . . . . . . 7 (𝑘 = 0 → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
3130adantl 485 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑘 = 0) → (1 = ((𝑘 · (2↑(𝑁 + 2))) + 1) ↔ 1 = ((0 · (2↑(𝑁 + 2))) + 1)))
32 2nn0 11902 . . . . . . . . . . . 12 2 ∈ ℕ0
3332a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ0)
34 eluzge2nn0 12275 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
3534, 33nn0addcld 11947 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (𝑁 + 2) ∈ ℕ0)
3633, 35nn0expcld 13603 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℕ0)
3736nn0cnd 11945 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (2↑(𝑁 + 2)) ∈ ℂ)
3837mul02d 10827 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (0 · (2↑(𝑁 + 2))) = 0)
3938oveq1d 7150 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((0 · (2↑(𝑁 + 2))) + 1) = (0 + 1))
40 0p1e1 11747 . . . . . . 7 (0 + 1) = 1
4139, 40eqtr2di 2850 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 1 = ((0 · (2↑(𝑁 + 2))) + 1))
4227, 31, 41rspcedvd 3574 . . . . 5 (𝑁 ∈ (ℤ‘2) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
4342adantr 484 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ 1 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 1 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
44 simpl 486 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → 𝑁 ∈ (ℤ‘2))
4544adantl 485 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑁 ∈ (ℤ‘2))
46 simpl 486 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∈ ℙ)
47 simprr 772 . . . . . 6 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → 𝑥 ∥ (FermatNo‘𝑁))
48 nnssnn0 11888 . . . . . . 7 ℕ ⊆ ℕ0
49 fmtnoprmfac2 44084 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
50 ssrexv 3982 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑘 ∈ ℕ 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5148, 49, 50mpsyl 68 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∈ ℙ ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5245, 46, 47, 51syl3anc 1368 . . . . 5 ((𝑥 ∈ ℙ ∧ (𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁))) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
5352ex 416 . . . 4 (𝑥 ∈ ℙ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑥 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑥 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
54 fmtnofac2lem 44085 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((((𝑁 ∈ (ℤ‘2) ∧ 𝑦 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑦 = ((𝑘 · (2↑(𝑁 + 2))) + 1)) ∧ ((𝑁 ∈ (ℤ‘2) ∧ 𝑧 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑧 = ((𝑘 · (2↑(𝑁 + 2))) + 1))) → ((𝑁 ∈ (ℤ‘2) ∧ (𝑦 · 𝑧) ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 (𝑦 · 𝑧) = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
555, 10, 15, 20, 25, 43, 53, 54prmind 16020 . . 3 (𝑀 ∈ ℕ → ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1)))
5655expd 419 . 2 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → (𝑀 ∥ (FermatNo‘𝑁) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))))
57563imp21 1111 1 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∥ (FermatNo‘𝑁)) → ∃𝑘 ∈ ℕ0 𝑀 = ((𝑘 · (2↑(𝑁 + 2))) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cn 11625  2c2 11680  0cn0 11885  cuz 12231  cexp 13425  cdvds 15599  cprime 16005  FermatNocfmtno 44044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252  df-dvds 15600  df-gcd 15834  df-prm 16006  df-odz 16092  df-phi 16093  df-pc 16164  df-lgs 25879  df-fmtno 44045
This theorem is referenced by:  fmtnofac1  44087
  Copyright terms: Public domain W3C validator