MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1b Structured version   Visualization version   GIF version

Theorem elfz1b 13511
Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.)
Assertion
Ref Expression
elfz1b (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 13432 . . . 4 (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
2 simpl2 1193 . . . . 5 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℤ)
3 1red 11157 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ)
4 zre 12504 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
543ad2ant3 1136 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
6 zre 12504 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
763ad2ant2 1135 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
8 letr 11250 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
93, 5, 7, 8syl3anc 1372 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
109imp 408 . . . . 5 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 1 ≤ 𝑀)
11 elnnz1 12530 . . . . 5 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀))
122, 10, 11sylanbrc 584 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℕ)
131, 12sylbi 216 . . 3 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℕ)
14 elfzel2 13440 . . . 4 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
15 fznn 13510 . . . . 5 (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁𝑀)))
1615biimpd 228 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁𝑀)))
1714, 16mpcom 38 . . 3 (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁𝑀))
18 3anan12 1097 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) ↔ (𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑁𝑀)))
1913, 17, 18sylanbrc 584 . 2 (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
20 nnz 12521 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
2120, 15syl 17 . . . . 5 (𝑀 ∈ ℕ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁𝑀)))
2221biimprd 248 . . . 4 (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ (1...𝑀)))
2322expd 417 . . 3 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑁𝑀𝑁 ∈ (1...𝑀))))
24233imp21 1115 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ (1...𝑀))
2519, 24impbii 208 1 (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107   class class class wbr 5106  (class class class)co 7358  cr 11051  1c1 11053  cle 11191  cn 12154  cz 12500  ...cfz 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-z 12501  df-uz 12765  df-fz 13426
This theorem is referenced by:  ubmelfzo  13638  cshwidxm  14697  cshwidxn  14698  gausslemma2dlem1a  26716  gausslemma2dlem2  26718  gausslemma2dlem4  26720  dlwwlknondlwlknonf1olem1  29311  pmtrto1cl  31951  psgnfzto1stlem  31952  fzto1st  31955  psgnfzto1st  31957  hgt750lemb  33272  poimirlem32  36113
  Copyright terms: Public domain W3C validator