![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz1b | Structured version Visualization version GIF version |
Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.) |
Ref | Expression |
---|---|
elfz1b | ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 13550 | . . . 4 ⊢ (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | |
2 | simpl2 1191 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℤ) | |
3 | 1red 11259 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
4 | zre 12614 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
5 | 4 | 3ad2ant3 1134 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
6 | zre 12614 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
7 | 6 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
8 | letr 11352 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) | |
9 | 3, 5, 7, 8 | syl3anc 1370 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) |
10 | 9 | imp 406 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 1 ≤ 𝑀) |
11 | elnnz1 12640 | . . . . 5 ⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀)) | |
12 | 2, 10, 11 | sylanbrc 583 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℕ) |
13 | 1, 12 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℕ) |
14 | elfzel2 13558 | . . . 4 ⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℤ) | |
15 | fznn 13628 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) | |
16 | 15 | biimpd 229 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) |
17 | 14, 16 | mpcom 38 | . . 3 ⊢ (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
18 | 3anan12 1095 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) ↔ (𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) | |
19 | 13, 17, 18 | sylanbrc 583 | . 2 ⊢ (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
20 | nnz 12631 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
21 | 20, 15 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) |
22 | 21 | biimprd 248 | . . . 4 ⊢ (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ (1...𝑀))) |
23 | 22 | expd 415 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑁 ≤ 𝑀 → 𝑁 ∈ (1...𝑀)))) |
24 | 23 | 3imp21 1113 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ (1...𝑀)) |
25 | 19, 24 | impbii 209 | 1 ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 ℝcr 11151 1c1 11153 ≤ cle 11293 ℕcn 12263 ℤcz 12610 ...cfz 13543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-z 12611 df-uz 12876 df-fz 13544 |
This theorem is referenced by: ubmelfzo 13765 cshwidxm 14842 cshwidxn 14843 gausslemma2dlem1a 27423 gausslemma2dlem2 27425 gausslemma2dlem4 27427 dlwwlknondlwlknonf1olem1 30392 pmtrto1cl 33101 psgnfzto1stlem 33102 fzto1st 33105 psgnfzto1st 33107 hgt750lemb 34649 poimirlem32 37638 |
Copyright terms: Public domain | W3C validator |