| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz1b | Structured version Visualization version GIF version | ||
| Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.) |
| Ref | Expression |
|---|---|
| elfz1b | ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2 13482 | . . . 4 ⊢ (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℤ) | |
| 3 | 1red 11182 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
| 4 | zre 12540 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 5 | 4 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
| 6 | zre 12540 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 7 | 6 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
| 8 | letr 11275 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) | |
| 9 | 3, 5, 7, 8 | syl3anc 1373 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 1 ≤ 𝑀) |
| 11 | elnnz1 12566 | . . . . 5 ⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀)) | |
| 12 | 2, 10, 11 | sylanbrc 583 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℕ) |
| 13 | 1, 12 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℕ) |
| 14 | elfzel2 13490 | . . . 4 ⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℤ) | |
| 15 | fznn 13560 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) | |
| 16 | 15 | biimpd 229 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) |
| 17 | 14, 16 | mpcom 38 | . . 3 ⊢ (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| 18 | 3anan12 1095 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) ↔ (𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) | |
| 19 | 13, 17, 18 | sylanbrc 583 | . 2 ⊢ (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| 20 | nnz 12557 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
| 21 | 20, 15 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) |
| 22 | 21 | biimprd 248 | . . . 4 ⊢ (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ (1...𝑀))) |
| 23 | 22 | expd 415 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑁 ≤ 𝑀 → 𝑁 ∈ (1...𝑀)))) |
| 24 | 23 | 3imp21 1113 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ (1...𝑀)) |
| 25 | 19, 24 | impbii 209 | 1 ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 1c1 11076 ≤ cle 11216 ℕcn 12193 ℤcz 12536 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: ubmelfzo 13698 cshwidxm 14780 cshwidxn 14781 gausslemma2dlem1a 27283 gausslemma2dlem2 27285 gausslemma2dlem4 27287 dlwwlknondlwlknonf1olem1 30300 pmtrto1cl 33063 psgnfzto1stlem 33064 fzto1st 33067 psgnfzto1st 33069 hgt750lemb 34654 poimirlem32 37653 |
| Copyright terms: Public domain | W3C validator |