| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz1b | Structured version Visualization version GIF version | ||
| Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.) |
| Ref | Expression |
|---|---|
| elfz1b | ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2 13554 | . . . 4 ⊢ (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℤ) | |
| 3 | 1red 11262 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
| 4 | zre 12617 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 5 | 4 | 3ad2ant3 1136 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
| 6 | zre 12617 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 7 | 6 | 3ad2ant2 1135 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
| 8 | letr 11355 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) | |
| 9 | 3, 5, 7, 8 | syl3anc 1373 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) |
| 10 | 9 | imp 406 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 1 ≤ 𝑀) |
| 11 | elnnz1 12643 | . . . . 5 ⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀)) | |
| 12 | 2, 10, 11 | sylanbrc 583 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℕ) |
| 13 | 1, 12 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℕ) |
| 14 | elfzel2 13562 | . . . 4 ⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℤ) | |
| 15 | fznn 13632 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) | |
| 16 | 15 | biimpd 229 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) |
| 17 | 14, 16 | mpcom 38 | . . 3 ⊢ (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| 18 | 3anan12 1096 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) ↔ (𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) | |
| 19 | 13, 17, 18 | sylanbrc 583 | . 2 ⊢ (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| 20 | nnz 12634 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
| 21 | 20, 15 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) |
| 22 | 21 | biimprd 248 | . . . 4 ⊢ (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ (1...𝑀))) |
| 23 | 22 | expd 415 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑁 ≤ 𝑀 → 𝑁 ∈ (1...𝑀)))) |
| 24 | 23 | 3imp21 1114 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ (1...𝑀)) |
| 25 | 19, 24 | impbii 209 | 1 ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 1c1 11156 ≤ cle 11296 ℕcn 12266 ℤcz 12613 ...cfz 13547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-z 12614 df-uz 12879 df-fz 13548 |
| This theorem is referenced by: ubmelfzo 13769 cshwidxm 14846 cshwidxn 14847 gausslemma2dlem1a 27409 gausslemma2dlem2 27411 gausslemma2dlem4 27413 dlwwlknondlwlknonf1olem1 30383 pmtrto1cl 33119 psgnfzto1stlem 33120 fzto1st 33123 psgnfzto1st 33125 hgt750lemb 34671 poimirlem32 37659 |
| Copyright terms: Public domain | W3C validator |