Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfz1b | Structured version Visualization version GIF version |
Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.) |
Ref | Expression |
---|---|
elfz1b | ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 13348 | . . . 4 ⊢ (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) | |
2 | simpl2 1191 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℤ) | |
3 | 1red 11078 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
4 | zre 12425 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
5 | 4 | 3ad2ant3 1134 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
6 | zre 12425 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
7 | 6 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
8 | letr 11171 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) | |
9 | 3, 5, 7, 8 | syl3anc 1370 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀) → 1 ≤ 𝑀)) |
10 | 9 | imp 407 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 1 ≤ 𝑀) |
11 | elnnz1 12448 | . . . . 5 ⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀)) | |
12 | 2, 10, 11 | sylanbrc 583 | . . . 4 ⊢ (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀)) → 𝑀 ∈ ℕ) |
13 | 1, 12 | sylbi 216 | . . 3 ⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℕ) |
14 | elfzel2 13356 | . . . 4 ⊢ (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℤ) | |
15 | fznn 13426 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) | |
16 | 15 | biimpd 228 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) |
17 | 14, 16 | mpcom 38 | . . 3 ⊢ (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
18 | 3anan12 1095 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) ↔ (𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) | |
19 | 13, 17, 18 | sylanbrc 583 | . 2 ⊢ (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
20 | nnz 12444 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
21 | 20, 15 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀))) |
22 | 21 | biimprd 247 | . . . 4 ⊢ (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ (1...𝑀))) |
23 | 22 | expd 416 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑁 ≤ 𝑀 → 𝑁 ∈ (1...𝑀)))) |
24 | 23 | 3imp21 1113 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀) → 𝑁 ∈ (1...𝑀)) |
25 | 19, 24 | impbii 208 | 1 ⊢ (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5093 (class class class)co 7338 ℝcr 10972 1c1 10974 ≤ cle 11112 ℕcn 12075 ℤcz 12421 ...cfz 13341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-z 12422 df-uz 12685 df-fz 13342 |
This theorem is referenced by: ubmelfzo 13554 cshwidxm 14620 cshwidxn 14621 gausslemma2dlem1a 26620 gausslemma2dlem2 26622 gausslemma2dlem4 26624 dlwwlknondlwlknonf1olem1 29017 pmtrto1cl 31653 psgnfzto1stlem 31654 fzto1st 31657 psgnfzto1st 31659 hgt750lemb 32936 poimirlem32 35965 |
Copyright terms: Public domain | W3C validator |