MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamufacex Structured version   Visualization version   GIF version

Theorem mamufacex 22416
Description: Every solution of the equation 𝐴𝑋 = 𝐵 for matrices 𝐴 and 𝐵 is a matrix. (Contributed by AV, 10-Feb-2019.)
Hypotheses
Ref Expression
mamudm.e 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
mamudm.b 𝐵 = (Base‘𝐸)
mamudm.f 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
mamudm.c 𝐶 = (Base‘𝐹)
mamudm.m × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamufacex.g 𝐺 = (𝑅 freeLMod (𝑀 × 𝑃))
mamufacex.d 𝐷 = (Base‘𝐺)
Assertion
Ref Expression
mamufacex (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))

Proof of Theorem mamufacex
StepHypRef Expression
1 2a1 28 . 2 (𝑍𝐶 → (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
2 mamudm.e . . . . . . . 8 𝐸 = (𝑅 freeLMod (𝑀 × 𝑁))
3 mamudm.b . . . . . . . 8 𝐵 = (Base‘𝐸)
4 mamudm.f . . . . . . . 8 𝐹 = (𝑅 freeLMod (𝑁 × 𝑃))
5 mamudm.c . . . . . . . 8 𝐶 = (Base‘𝐹)
6 mamudm.m . . . . . . . 8 × = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
72, 3, 4, 5, 6mamudm 22415 . . . . . . 7 ((𝑅𝑉 ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
87adantlr 715 . . . . . 6 (((𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
983adant1 1129 . . . . 5 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → dom × = (𝐵 × 𝐶))
10 simpl 482 . . . . . 6 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ¬ 𝑍𝐶)
1110intnand 488 . . . . 5 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ¬ (𝑋𝐵𝑍𝐶))
12 ndmovg 7616 . . . . 5 ((dom × = (𝐵 × 𝐶) ∧ ¬ (𝑋𝐵𝑍𝐶)) → (𝑋 × 𝑍) = ∅)
139, 11, 12syl2an2 686 . . . 4 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → (𝑋 × 𝑍) = ∅)
14 eqeq1 2739 . . . . . 6 ((𝑋 × 𝑍) = ∅ → ((𝑋 × 𝑍) = 𝑌 ↔ ∅ = 𝑌))
15 xpfi 9356 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin)
16153adant2 1130 . . . . . . . . . . . . . . 15 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin)
17 xpnz 6181 . . . . . . . . . . . . . . . 16 ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ↔ (𝑀 × 𝑃) ≠ ∅)
1817biimpi 216 . . . . . . . . . . . . . . 15 ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → (𝑀 × 𝑃) ≠ ∅)
19 mamufacex.g . . . . . . . . . . . . . . . 16 𝐺 = (𝑅 freeLMod (𝑀 × 𝑃))
20 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
21 mamufacex.d . . . . . . . . . . . . . . . 16 𝐷 = (Base‘𝐺)
2219, 20, 21elfrlmbasn0 21801 . . . . . . . . . . . . . . 15 (((𝑀 × 𝑃) ∈ Fin ∧ (𝑀 × 𝑃) ≠ ∅) → (𝑌𝐷𝑌 ≠ ∅))
2316, 18, 22syl2an 596 . . . . . . . . . . . . . 14 (((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) ∧ (𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅)) → (𝑌𝐷𝑌 ≠ ∅))
2423ex 412 . . . . . . . . . . . . 13 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → (𝑌𝐷𝑌 ≠ ∅)))
2524com13 88 . . . . . . . . . . . 12 (𝑌𝐷 → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → 𝑌 ≠ ∅)))
2625adantl 481 . . . . . . . . . . 11 ((𝑅𝑉𝑌𝐷) → ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) → ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin) → 𝑌 ≠ ∅)))
27263imp21 1113 . . . . . . . . . 10 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → 𝑌 ≠ ∅)
28 eqneqall 2949 . . . . . . . . . 10 (𝑌 = ∅ → (𝑌 ≠ ∅ → 𝑍𝐶))
2927, 28syl5com 31 . . . . . . . . 9 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → (𝑌 = ∅ → 𝑍𝐶))
3029adantl 481 . . . . . . . 8 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → (𝑌 = ∅ → 𝑍𝐶))
3130com12 32 . . . . . . 7 (𝑌 = ∅ → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶))
3231eqcoms 2743 . . . . . 6 (∅ = 𝑌 → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶))
3314, 32biimtrdi 253 . . . . 5 ((𝑋 × 𝑍) = ∅ → ((𝑋 × 𝑍) = 𝑌 → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → 𝑍𝐶)))
3433com23 86 . . . 4 ((𝑋 × 𝑍) = ∅ → ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
3513, 34mpcom 38 . . 3 ((¬ 𝑍𝐶 ∧ ((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin))) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))
3635ex 412 . 2 𝑍𝐶 → (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶)))
371, 36pm2.61i 182 1 (((𝑀 ≠ ∅ ∧ 𝑃 ≠ ∅) ∧ (𝑅𝑉𝑌𝐷) ∧ (𝑀 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑃 ∈ Fin)) → ((𝑋 × 𝑍) = 𝑌𝑍𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  c0 4339  cotp 4639   × cxp 5687  dom cdm 5689  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245   freeLMod cfrlm 21784   maMul cmmul 22410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-mamu 22411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator