Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssltright Structured version   Visualization version   GIF version

Theorem ssltright 33982
Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
ssltright (𝐴 No → {𝐴} <<s ( R ‘𝐴))

Proof of Theorem ssltright
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . 3 {𝐴} ∈ V
21a1i 11 . 2 (𝐴 No → {𝐴} ∈ V)
3 fvexd 6771 . 2 (𝐴 No → ( R ‘𝐴) ∈ V)
4 snssi 4738 . 2 (𝐴 No → {𝐴} ⊆ No )
5 rightf 33977 . . . 4 R : No ⟶𝒫 No
65ffvelrni 6942 . . 3 (𝐴 No → ( R ‘𝐴) ∈ 𝒫 No )
76elpwid 4541 . 2 (𝐴 No → ( R ‘𝐴) ⊆ No )
8 velsn 4574 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
9 rightval 33975 . . . . . . . . . 10 ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦}
109a1i 11 . . . . . . . . 9 (𝐴 No → ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦})
1110eleq2d 2824 . . . . . . . 8 (𝐴 No → (𝑦 ∈ ( R ‘𝐴) ↔ 𝑦 ∈ {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦}))
12 rabid 3304 . . . . . . . 8 (𝑦 ∈ {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦} ↔ (𝑦 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑦))
1311, 12bitrdi 286 . . . . . . 7 (𝐴 No → (𝑦 ∈ ( R ‘𝐴) ↔ (𝑦 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑦)))
1413simplbda 499 . . . . . 6 ((𝐴 No 𝑦 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑦)
15 breq1 5073 . . . . . 6 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
1614, 15syl5ibr 245 . . . . 5 (𝑥 = 𝐴 → ((𝐴 No 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦))
1716expd 415 . . . 4 (𝑥 = 𝐴 → (𝐴 No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦)))
188, 17sylbi 216 . . 3 (𝑥 ∈ {𝐴} → (𝐴 No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦)))
19183imp21 1112 . 2 ((𝐴 No 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦)
202, 3, 4, 7, 19ssltd 33913 1 (𝐴 No → {𝐴} <<s ( R ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cfv 6418   No csur 33770   <s cslt 33771   bday cbday 33772   <<s csslt 33902   O cold 33954   R cright 33957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959  df-right 33962
This theorem is referenced by:  lltropt  33983  madebdaylemlrcut  34006
  Copyright terms: Public domain W3C validator