![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltright | Structured version Visualization version GIF version |
Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
ssltright | ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5445 | . . 3 ⊢ {𝐴} ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
3 | fvexd 6929 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ V) | |
4 | snssi 4816 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
5 | rightf 27931 | . . . 4 ⊢ R : No ⟶𝒫 No | |
6 | 5 | ffvelcdmi 7110 | . . 3 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ 𝒫 No ) |
7 | 6 | elpwid 4617 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
8 | velsn 4650 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
9 | rightval 27929 | . . . . . . . . . 10 ⊢ ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦}) |
11 | 10 | eleq2d 2827 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ 𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦})) |
12 | rabid 3458 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦)) | |
13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦))) |
14 | 13 | simplbda 499 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑦) |
15 | breq1 5154 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦)) | |
16 | 14, 15 | imbitrrid 246 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦)) |
17 | 16 | expd 415 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
18 | 8, 17 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ {𝐴} → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
19 | 18 | 3imp21 1114 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦) |
20 | 2, 3, 4, 7, 19 | ssltd 27862 | 1 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3436 Vcvv 3481 𝒫 cpw 4608 {csn 4634 class class class wbr 5151 ‘cfv 6569 No csur 27710 <s cslt 27711 bday cbday 27712 <<s csslt 27851 O cold 27908 R cright 27911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-1o 8514 df-2o 8515 df-no 27713 df-slt 27714 df-bday 27715 df-sslt 27852 df-scut 27854 df-made 27912 df-old 27913 df-right 27916 |
This theorem is referenced by: lltropt 27937 madebdaylemlrcut 27963 mulsproplem5 28172 mulsproplem6 28173 mulsproplem7 28174 mulsproplem8 28175 mulsuniflem 28201 |
Copyright terms: Public domain | W3C validator |