| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltright | Structured version Visualization version GIF version | ||
| Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| ssltright | ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5375 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
| 3 | fvexd 6837 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ V) | |
| 4 | snssi 4759 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
| 5 | rightf 27780 | . . . 4 ⊢ R : No ⟶𝒫 No | |
| 6 | 5 | ffvelcdmi 7017 | . . 3 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ 𝒫 No ) |
| 7 | 6 | elpwid 4560 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
| 8 | velsn 4593 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 9 | rightval 27774 | . . . . . . . . . 10 ⊢ ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦}) |
| 11 | 10 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ 𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦})) |
| 12 | rabid 3416 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦)) | |
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦))) |
| 14 | 13 | simplbda 499 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑦) |
| 15 | breq1 5095 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦)) | |
| 16 | 14, 15 | imbitrrid 246 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦)) |
| 17 | 16 | expd 415 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
| 18 | 8, 17 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ {𝐴} → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
| 19 | 18 | 3imp21 1113 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦) |
| 20 | 2, 3, 4, 7, 19 | ssltd 27702 | 1 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 ‘cfv 6482 No csur 27549 <s cslt 27550 bday cbday 27551 <<s csslt 27691 O cold 27753 R cright 27756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-bday 27554 df-sslt 27692 df-scut 27694 df-made 27757 df-old 27758 df-right 27761 |
| This theorem is referenced by: lltropt 27786 madebdaylemlrcut 27813 mulsproplem5 28028 mulsproplem6 28029 mulsproplem7 28030 mulsproplem8 28031 mulsuniflem 28057 |
| Copyright terms: Public domain | W3C validator |