![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssltright | Structured version Visualization version GIF version |
Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
ssltright | β’ (π΄ β No β {π΄} <<s ( R βπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5430 | . . 3 β’ {π΄} β V | |
2 | 1 | a1i 11 | . 2 β’ (π΄ β No β {π΄} β V) |
3 | fvexd 6903 | . 2 β’ (π΄ β No β ( R βπ΄) β V) | |
4 | snssi 4810 | . 2 β’ (π΄ β No β {π΄} β No ) | |
5 | rightf 27350 | . . . 4 β’ R : No βΆπ« No | |
6 | 5 | ffvelcdmi 7082 | . . 3 β’ (π΄ β No β ( R βπ΄) β π« No ) |
7 | 6 | elpwid 4610 | . 2 β’ (π΄ β No β ( R βπ΄) β No ) |
8 | velsn 4643 | . . . 4 β’ (π₯ β {π΄} β π₯ = π΄) | |
9 | rightval 27348 | . . . . . . . . . 10 β’ ( R βπ΄) = {π¦ β ( O β( bday βπ΄)) β£ π΄ <s π¦} | |
10 | 9 | a1i 11 | . . . . . . . . 9 β’ (π΄ β No β ( R βπ΄) = {π¦ β ( O β( bday βπ΄)) β£ π΄ <s π¦}) |
11 | 10 | eleq2d 2819 | . . . . . . . 8 β’ (π΄ β No β (π¦ β ( R βπ΄) β π¦ β {π¦ β ( O β( bday βπ΄)) β£ π΄ <s π¦})) |
12 | rabid 3452 | . . . . . . . 8 β’ (π¦ β {π¦ β ( O β( bday βπ΄)) β£ π΄ <s π¦} β (π¦ β ( O β( bday βπ΄)) β§ π΄ <s π¦)) | |
13 | 11, 12 | bitrdi 286 | . . . . . . 7 β’ (π΄ β No β (π¦ β ( R βπ΄) β (π¦ β ( O β( bday βπ΄)) β§ π΄ <s π¦))) |
14 | 13 | simplbda 500 | . . . . . 6 β’ ((π΄ β No β§ π¦ β ( R βπ΄)) β π΄ <s π¦) |
15 | breq1 5150 | . . . . . 6 β’ (π₯ = π΄ β (π₯ <s π¦ β π΄ <s π¦)) | |
16 | 14, 15 | imbitrrid 245 | . . . . 5 β’ (π₯ = π΄ β ((π΄ β No β§ π¦ β ( R βπ΄)) β π₯ <s π¦)) |
17 | 16 | expd 416 | . . . 4 β’ (π₯ = π΄ β (π΄ β No β (π¦ β ( R βπ΄) β π₯ <s π¦))) |
18 | 8, 17 | sylbi 216 | . . 3 β’ (π₯ β {π΄} β (π΄ β No β (π¦ β ( R βπ΄) β π₯ <s π¦))) |
19 | 18 | 3imp21 1114 | . 2 β’ ((π΄ β No β§ π₯ β {π΄} β§ π¦ β ( R βπ΄)) β π₯ <s π¦) |
20 | 2, 3, 4, 7, 19 | ssltd 27282 | 1 β’ (π΄ β No β {π΄} <<s ( R βπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 π« cpw 4601 {csn 4627 class class class wbr 5147 βcfv 6540 No csur 27132 <s cslt 27133 bday cbday 27134 <<s csslt 27271 O cold 27327 R cright 27330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-no 27135 df-slt 27136 df-bday 27137 df-sslt 27272 df-scut 27274 df-made 27331 df-old 27332 df-right 27335 |
This theorem is referenced by: lltropt 27356 madebdaylemlrcut 27382 mulsproplem5 27565 mulsproplem6 27566 mulsproplem7 27567 mulsproplem8 27568 mulsuniflem 27593 |
Copyright terms: Public domain | W3C validator |