Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssltright | Structured version Visualization version GIF version |
Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
ssltright | ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
3 | fvexd 6789 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ V) | |
4 | snssi 4741 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
5 | rightf 34050 | . . . 4 ⊢ R : No ⟶𝒫 No | |
6 | 5 | ffvelrni 6960 | . . 3 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ 𝒫 No ) |
7 | 6 | elpwid 4544 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
8 | velsn 4577 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
9 | rightval 34048 | . . . . . . . . . 10 ⊢ ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} | |
10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦}) |
11 | 10 | eleq2d 2824 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ 𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦})) |
12 | rabid 3310 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦)) | |
13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦))) |
14 | 13 | simplbda 500 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑦) |
15 | breq1 5077 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦)) | |
16 | 14, 15 | syl5ibr 245 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦)) |
17 | 16 | expd 416 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
18 | 8, 17 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ {𝐴} → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
19 | 18 | 3imp21 1113 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦) |
20 | 2, 3, 4, 7, 19 | ssltd 33986 | 1 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 ‘cfv 6433 No csur 33843 <s cslt 33844 bday cbday 33845 <<s csslt 33975 O cold 34027 R cright 34030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 df-sslt 33976 df-scut 33978 df-made 34031 df-old 34032 df-right 34035 |
This theorem is referenced by: lltropt 34056 madebdaylemlrcut 34079 |
Copyright terms: Public domain | W3C validator |