| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltright | Structured version Visualization version GIF version | ||
| Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| ssltright | ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5404 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
| 3 | fvexd 6888 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ V) | |
| 4 | snssi 4782 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
| 5 | rightf 27810 | . . . 4 ⊢ R : No ⟶𝒫 No | |
| 6 | 5 | ffvelcdmi 7070 | . . 3 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ 𝒫 No ) |
| 7 | 6 | elpwid 4582 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
| 8 | velsn 4615 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 9 | rightval 27808 | . . . . . . . . . 10 ⊢ ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦}) |
| 11 | 10 | eleq2d 2819 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ 𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦})) |
| 12 | rabid 3435 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦)) | |
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦))) |
| 14 | 13 | simplbda 499 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑦) |
| 15 | breq1 5120 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦)) | |
| 16 | 14, 15 | imbitrrid 246 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦)) |
| 17 | 16 | expd 415 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
| 18 | 8, 17 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ {𝐴} → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
| 19 | 18 | 3imp21 1113 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦) |
| 20 | 2, 3, 4, 7, 19 | ssltd 27741 | 1 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3413 Vcvv 3457 𝒫 cpw 4573 {csn 4599 class class class wbr 5117 ‘cfv 6528 No csur 27589 <s cslt 27590 bday cbday 27591 <<s csslt 27730 O cold 27787 R cright 27790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-1o 8475 df-2o 8476 df-no 27592 df-slt 27593 df-bday 27594 df-sslt 27731 df-scut 27733 df-made 27791 df-old 27792 df-right 27795 |
| This theorem is referenced by: lltropt 27816 madebdaylemlrcut 27842 mulsproplem5 28051 mulsproplem6 28052 mulsproplem7 28053 mulsproplem8 28054 mulsuniflem 28080 |
| Copyright terms: Public domain | W3C validator |