MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltright Structured version   Visualization version   GIF version

Theorem ssltright 27845
Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
ssltright (𝐴 No → {𝐴} <<s ( R ‘𝐴))

Proof of Theorem ssltright
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5416 . . 3 {𝐴} ∈ V
21a1i 11 . 2 (𝐴 No → {𝐴} ∈ V)
3 fvexd 6900 . 2 (𝐴 No → ( R ‘𝐴) ∈ V)
4 snssi 4788 . 2 (𝐴 No → {𝐴} ⊆ No )
5 rightf 27840 . . . 4 R : No ⟶𝒫 No
65ffvelcdmi 7082 . . 3 (𝐴 No → ( R ‘𝐴) ∈ 𝒫 No )
76elpwid 4589 . 2 (𝐴 No → ( R ‘𝐴) ⊆ No )
8 velsn 4622 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
9 rightval 27838 . . . . . . . . . 10 ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦}
109a1i 11 . . . . . . . . 9 (𝐴 No → ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦})
1110eleq2d 2819 . . . . . . . 8 (𝐴 No → (𝑦 ∈ ( R ‘𝐴) ↔ 𝑦 ∈ {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦}))
12 rabid 3441 . . . . . . . 8 (𝑦 ∈ {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦} ↔ (𝑦 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑦))
1311, 12bitrdi 287 . . . . . . 7 (𝐴 No → (𝑦 ∈ ( R ‘𝐴) ↔ (𝑦 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑦)))
1413simplbda 499 . . . . . 6 ((𝐴 No 𝑦 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑦)
15 breq1 5126 . . . . . 6 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
1614, 15imbitrrid 246 . . . . 5 (𝑥 = 𝐴 → ((𝐴 No 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦))
1716expd 415 . . . 4 (𝑥 = 𝐴 → (𝐴 No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦)))
188, 17sylbi 217 . . 3 (𝑥 ∈ {𝐴} → (𝐴 No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦)))
19183imp21 1113 . 2 ((𝐴 No 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦)
202, 3, 4, 7, 19ssltd 27771 1 (𝐴 No → {𝐴} <<s ( R ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3419  Vcvv 3463  𝒫 cpw 4580  {csn 4606   class class class wbr 5123  cfv 6540   No csur 27619   <s cslt 27620   bday cbday 27621   <<s csslt 27760   O cold 27817   R cright 27820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-1o 8487  df-2o 8488  df-no 27622  df-slt 27623  df-bday 27624  df-sslt 27761  df-scut 27763  df-made 27821  df-old 27822  df-right 27825
This theorem is referenced by:  lltropt  27846  madebdaylemlrcut  27872  mulsproplem5  28081  mulsproplem6  28082  mulsproplem7  28083  mulsproplem8  28084  mulsuniflem  28110
  Copyright terms: Public domain W3C validator