| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssltright | Structured version Visualization version GIF version | ||
| Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| ssltright | ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5416 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ∈ V) |
| 3 | fvexd 6900 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ V) | |
| 4 | snssi 4788 | . 2 ⊢ (𝐴 ∈ No → {𝐴} ⊆ No ) | |
| 5 | rightf 27840 | . . . 4 ⊢ R : No ⟶𝒫 No | |
| 6 | 5 | ffvelcdmi 7082 | . . 3 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ∈ 𝒫 No ) |
| 7 | 6 | elpwid 4589 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) ⊆ No ) |
| 8 | velsn 4622 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 9 | rightval 27838 | . . . . . . . . . 10 ⊢ ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} | |
| 10 | 9 | a1i 11 | . . . . . . . . 9 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦}) |
| 11 | 10 | eleq2d 2819 | . . . . . . . 8 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ 𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦})) |
| 12 | rabid 3441 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑦 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑦} ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦)) | |
| 13 | 11, 12 | bitrdi 287 | . . . . . . 7 ⊢ (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) ↔ (𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑦))) |
| 14 | 13 | simplbda 499 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑦) |
| 15 | breq1 5126 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 <s 𝑦 ↔ 𝐴 <s 𝑦)) | |
| 16 | 14, 15 | imbitrrid 246 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ∈ No ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦)) |
| 17 | 16 | expd 415 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
| 18 | 8, 17 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ {𝐴} → (𝐴 ∈ No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦))) |
| 19 | 18 | 3imp21 1113 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦) |
| 20 | 2, 3, 4, 7, 19 | ssltd 27771 | 1 ⊢ (𝐴 ∈ No → {𝐴} <<s ( R ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 𝒫 cpw 4580 {csn 4606 class class class wbr 5123 ‘cfv 6540 No csur 27619 <s cslt 27620 bday cbday 27621 <<s csslt 27760 O cold 27817 R cright 27820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-2o 8488 df-no 27622 df-slt 27623 df-bday 27624 df-sslt 27761 df-scut 27763 df-made 27821 df-old 27822 df-right 27825 |
| This theorem is referenced by: lltropt 27846 madebdaylemlrcut 27872 mulsproplem5 28081 mulsproplem6 28082 mulsproplem7 28083 mulsproplem8 28084 mulsuniflem 28110 |
| Copyright terms: Public domain | W3C validator |