MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltright Structured version   Visualization version   GIF version

Theorem ssltright 27820
Description: A surreal is less than its right options. Theorem 0(i) of [Conway] p. 16. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
ssltright (𝐴 No → {𝐴} <<s ( R ‘𝐴))

Proof of Theorem ssltright
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5386 . . 3 {𝐴} ∈ V
21a1i 11 . 2 (𝐴 No → {𝐴} ∈ V)
3 fvexd 6855 . 2 (𝐴 No → ( R ‘𝐴) ∈ V)
4 snssi 4768 . 2 (𝐴 No → {𝐴} ⊆ No )
5 rightf 27815 . . . 4 R : No ⟶𝒫 No
65ffvelcdmi 7037 . . 3 (𝐴 No → ( R ‘𝐴) ∈ 𝒫 No )
76elpwid 4568 . 2 (𝐴 No → ( R ‘𝐴) ⊆ No )
8 velsn 4601 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
9 rightval 27809 . . . . . . . . . 10 ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦}
109a1i 11 . . . . . . . . 9 (𝐴 No → ( R ‘𝐴) = {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦})
1110eleq2d 2814 . . . . . . . 8 (𝐴 No → (𝑦 ∈ ( R ‘𝐴) ↔ 𝑦 ∈ {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦}))
12 rabid 3424 . . . . . . . 8 (𝑦 ∈ {𝑦 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑦} ↔ (𝑦 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑦))
1311, 12bitrdi 287 . . . . . . 7 (𝐴 No → (𝑦 ∈ ( R ‘𝐴) ↔ (𝑦 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑦)))
1413simplbda 499 . . . . . 6 ((𝐴 No 𝑦 ∈ ( R ‘𝐴)) → 𝐴 <s 𝑦)
15 breq1 5105 . . . . . 6 (𝑥 = 𝐴 → (𝑥 <s 𝑦𝐴 <s 𝑦))
1614, 15imbitrrid 246 . . . . 5 (𝑥 = 𝐴 → ((𝐴 No 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦))
1716expd 415 . . . 4 (𝑥 = 𝐴 → (𝐴 No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦)))
188, 17sylbi 217 . . 3 (𝑥 ∈ {𝐴} → (𝐴 No → (𝑦 ∈ ( R ‘𝐴) → 𝑥 <s 𝑦)))
19183imp21 1113 . 2 ((𝐴 No 𝑥 ∈ {𝐴} ∧ 𝑦 ∈ ( R ‘𝐴)) → 𝑥 <s 𝑦)
202, 3, 4, 7, 19ssltd 27737 1 (𝐴 No → {𝐴} <<s ( R ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  𝒫 cpw 4559  {csn 4585   class class class wbr 5102  cfv 6499   No csur 27584   <s cslt 27585   bday cbday 27586   <<s csslt 27726   O cold 27788   R cright 27791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589  df-sslt 27727  df-scut 27729  df-made 27792  df-old 27793  df-right 27796
This theorem is referenced by:  lltropt  27821  madebdaylemlrcut  27848  mulsproplem5  28063  mulsproplem6  28064  mulsproplem7  28065  mulsproplem8  28066  mulsuniflem  28092
  Copyright terms: Public domain W3C validator