MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltun1 Structured version   Visualization version   GIF version

Theorem ssltun1 27691
Description: Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
ssltun1 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) <<s 𝐶)

Proof of Theorem ssltun1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 27669 . . . 4 (𝐴 <<s 𝐶𝐴 ∈ V)
21adantr 480 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐴 ∈ V)
3 ssltex1 27669 . . . 4 (𝐵 <<s 𝐶𝐵 ∈ V)
43adantl 481 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐵 ∈ V)
52, 4unexd 7737 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) ∈ V)
6 ssltex2 27670 . . 3 (𝐴 <<s 𝐶𝐶 ∈ V)
76adantr 480 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐶 ∈ V)
8 ssltss1 27671 . . . 4 (𝐴 <<s 𝐶𝐴 No )
98adantr 480 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐴 No )
10 ssltss1 27671 . . . 4 (𝐵 <<s 𝐶𝐵 No )
1110adantl 481 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐵 No )
129, 11unssd 4181 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) ⊆ No )
13 ssltss2 27672 . . 3 (𝐴 <<s 𝐶𝐶 No )
1413adantr 480 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐶 No )
15 elun 4143 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
16 ssltsepc 27676 . . . . . . . 8 ((𝐴 <<s 𝐶𝑥𝐴𝑦𝐶) → 𝑥 <s 𝑦)
17163exp 1116 . . . . . . 7 (𝐴 <<s 𝐶 → (𝑥𝐴 → (𝑦𝐶𝑥 <s 𝑦)))
1817adantr 480 . . . . . 6 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑥𝐴 → (𝑦𝐶𝑥 <s 𝑦)))
1918com12 32 . . . . 5 (𝑥𝐴 → ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑦𝐶𝑥 <s 𝑦)))
20 ssltsepc 27676 . . . . . . . 8 ((𝐵 <<s 𝐶𝑥𝐵𝑦𝐶) → 𝑥 <s 𝑦)
21203exp 1116 . . . . . . 7 (𝐵 <<s 𝐶 → (𝑥𝐵 → (𝑦𝐶𝑥 <s 𝑦)))
2221adantl 481 . . . . . 6 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑥𝐵 → (𝑦𝐶𝑥 <s 𝑦)))
2322com12 32 . . . . 5 (𝑥𝐵 → ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑦𝐶𝑥 <s 𝑦)))
2419, 23jaoi 854 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑦𝐶𝑥 <s 𝑦)))
2515, 24sylbi 216 . . 3 (𝑥 ∈ (𝐴𝐵) → ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑦𝐶𝑥 <s 𝑦)))
26253imp21 1111 . 2 (((𝐴 <<s 𝐶𝐵 <<s 𝐶) ∧ 𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶) → 𝑥 <s 𝑦)
275, 7, 12, 14, 26ssltd 27674 1 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  wcel 2098  Vcvv 3468  cun 3941  wss 3943   class class class wbr 5141   No csur 27523   <s cslt 27524   <<s csslt 27663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-sslt 27664
This theorem is referenced by:  scutun12  27693
  Copyright terms: Public domain W3C validator