MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssltun1 Structured version   Visualization version   GIF version

Theorem ssltun1 27738
Description: Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021.)
Assertion
Ref Expression
ssltun1 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) <<s 𝐶)

Proof of Theorem ssltun1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 27716 . . . 4 (𝐴 <<s 𝐶𝐴 ∈ V)
21adantr 480 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐴 ∈ V)
3 ssltex1 27716 . . . 4 (𝐵 <<s 𝐶𝐵 ∈ V)
43adantl 481 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐵 ∈ V)
52, 4unexd 7694 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) ∈ V)
6 ssltex2 27717 . . 3 (𝐴 <<s 𝐶𝐶 ∈ V)
76adantr 480 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐶 ∈ V)
8 ssltss1 27718 . . . 4 (𝐴 <<s 𝐶𝐴 No )
98adantr 480 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐴 No )
10 ssltss1 27718 . . . 4 (𝐵 <<s 𝐶𝐵 No )
1110adantl 481 . . 3 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐵 No )
129, 11unssd 4145 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) ⊆ No )
13 ssltss2 27719 . . 3 (𝐴 <<s 𝐶𝐶 No )
1413adantr 480 . 2 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → 𝐶 No )
15 elun 4106 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
16 ssltsepc 27723 . . . . . . . 8 ((𝐴 <<s 𝐶𝑥𝐴𝑦𝐶) → 𝑥 <s 𝑦)
17163exp 1119 . . . . . . 7 (𝐴 <<s 𝐶 → (𝑥𝐴 → (𝑦𝐶𝑥 <s 𝑦)))
1817adantr 480 . . . . . 6 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑥𝐴 → (𝑦𝐶𝑥 <s 𝑦)))
1918com12 32 . . . . 5 (𝑥𝐴 → ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑦𝐶𝑥 <s 𝑦)))
20 ssltsepc 27723 . . . . . . . 8 ((𝐵 <<s 𝐶𝑥𝐵𝑦𝐶) → 𝑥 <s 𝑦)
21203exp 1119 . . . . . . 7 (𝐵 <<s 𝐶 → (𝑥𝐵 → (𝑦𝐶𝑥 <s 𝑦)))
2221adantl 481 . . . . . 6 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑥𝐵 → (𝑦𝐶𝑥 <s 𝑦)))
2322com12 32 . . . . 5 (𝑥𝐵 → ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑦𝐶𝑥 <s 𝑦)))
2419, 23jaoi 857 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑦𝐶𝑥 <s 𝑦)))
2515, 24sylbi 217 . . 3 (𝑥 ∈ (𝐴𝐵) → ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝑦𝐶𝑥 <s 𝑦)))
26253imp21 1113 . 2 (((𝐴 <<s 𝐶𝐵 <<s 𝐶) ∧ 𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶) → 𝑥 <s 𝑦)
275, 7, 12, 14, 26ssltd 27721 1 ((𝐴 <<s 𝐶𝐵 <<s 𝐶) → (𝐴𝐵) <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wcel 2109  Vcvv 3438  cun 3903  wss 3905   class class class wbr 5095   No csur 27568   <s cslt 27569   <<s csslt 27710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-sslt 27711
This theorem is referenced by:  scutun12  27740
  Copyright terms: Public domain W3C validator