| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3com23 1126 brelrng 5887 fnunres2 6602 fresaunres1 6704 fvun2 6923 onfununi 8270 oaword 8473 nnaword 8551 nnmword 8557 naddel1 8611 naddss1 8613 ecopovtrn 8753 fpmg 8802 tskord 10682 ltadd2 11228 mul12 11289 add12 11342 addsub 11382 addsubeq4 11386 ppncan 11414 leadd1 11596 ltaddsub2 11603 leaddsub2 11605 ltsub1 11624 ltsub2 11625 div23 11806 ltmul1 11982 ltmulgt11 11992 lediv1 11998 lemuldiv 12013 ltdiv2 12019 zdiv 12553 xltadd1 13162 xltmul1 13198 iooneg 13378 icoshft 13380 fzaddel 13465 fzshftral 13522 modmulmodr 13851 facwordi 14203 pfxeq 14610 abssubge0 15242 climshftlem 15488 dvdsmul1 16195 divalglem8 16318 divalgb 16322 rprpwr 16477 lcmgcdeq 16530 pcfac 16818 mhmmulg 19036 rmodislmodlem 20871 xrsdsreval 21357 cnmptcom 23613 hmeof1o2 23698 ordthmeo 23737 isclmi0 25045 iscvsi 25076 cxplt2 26654 sleadd1im 27950 sltadd2 27954 addscan2 27956 axcontlem8 28970 vcdi 30566 isvciOLD 30581 dipdi 30844 dipsubdi 30850 hvadd12 31036 hvmulcom 31044 his5 31087 bcs3 31184 chj12 31535 spansnmul 31565 homul12 31806 hoaddsub 31817 lnopmul 31968 lnopaddmuli 31974 lnopsubmuli 31976 lnfnaddmuli 32046 leop2 32125 dmdsl3 32316 chirredlem3 32393 atmd2 32401 cdj3lem3 32439 signstfvc 34659 3com12d 36426 cnambfre 37781 sdclem2 37855 indstrd 42359 addrcom 44631 uun123p1 44965 sineq0ALT 45093 stoweidlem17 46177 sigaras 47015 sigarms 47016 i0oii 49081 |
| Copyright terms: Public domain | W3C validator |