| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3com23 1126 brelrng 5921 fnunres2 6651 fresaunres1 6751 fvun2 6971 onfununi 8355 oaword 8561 nnaword 8639 nnmword 8645 naddel1 8699 naddss1 8701 ecopovtrn 8834 fpmg 8882 tskord 10794 ltadd2 11339 mul12 11400 add12 11453 addsub 11493 addsubeq4 11497 ppncan 11525 leadd1 11705 ltaddsub2 11712 leaddsub2 11714 ltsub1 11733 ltsub2 11734 div23 11915 ltmul1 12091 ltmulgt11 12101 lediv1 12107 lemuldiv 12122 ltdiv2 12128 zdiv 12663 xltadd1 13272 xltmul1 13308 iooneg 13488 icoshft 13490 fzaddel 13575 fzshftral 13632 modmulmodr 13955 facwordi 14307 pfxeq 14714 abssubge0 15346 climshftlem 15590 dvdsmul1 16297 divalglem8 16419 divalgb 16423 rprpwr 16578 lcmgcdeq 16631 pcfac 16919 mhmmulg 19098 rmodislmodlem 20886 xrsdsreval 21379 cnmptcom 23616 hmeof1o2 23701 ordthmeo 23740 isclmi0 25049 iscvsi 25080 cxplt2 26659 sleadd1im 27946 sltadd2 27950 addscan2 27952 axcontlem8 28950 vcdi 30546 isvciOLD 30561 dipdi 30824 dipsubdi 30830 hvadd12 31016 hvmulcom 31024 his5 31067 bcs3 31164 chj12 31515 spansnmul 31545 homul12 31786 hoaddsub 31797 lnopmul 31948 lnopaddmuli 31954 lnopsubmuli 31956 lnfnaddmuli 32026 leop2 32105 dmdsl3 32296 chirredlem3 32373 atmd2 32381 cdj3lem3 32419 signstfvc 34606 3com12d 36328 cnambfre 37692 sdclem2 37766 indstrd 42206 addrcom 44499 uun123p1 44833 sineq0ALT 44961 stoweidlem17 46046 sigaras 46884 sigarms 46885 i0oii 48894 |
| Copyright terms: Public domain | W3C validator |