Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1118 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3comr 1124 3com23 1125 brelrng 5883 fresaunres1 6699 fvun2 6917 onfununi 8243 oaword 8452 nnaword 8530 nnmword 8536 ecopovtrn 8681 fpmg 8728 tskord 10638 ltadd2 11181 mul12 11242 add12 11294 addsub 11334 addsubeq4 11338 ppncan 11365 leadd1 11545 ltaddsub2 11552 leaddsub2 11554 ltsub1 11573 ltsub2 11574 div23 11754 ltmul1 11927 ltmulgt11 11937 lediv1 11942 lemuldiv 11957 ltdiv2 11963 zdiv 12492 xltadd1 13092 xltmul1 13128 iooneg 13305 icoshft 13307 fzaddel 13392 fzshftral 13446 modmulmodr 13759 facwordi 14105 pfxeq 14508 abssubge0 15139 climshftlem 15383 dvdsmul1 16087 divalglem8 16209 divalgb 16213 rprpwr 16366 lcmgcdeq 16415 pcfac 16698 mhmmulg 18841 rmodislmodlem 20297 xrsdsreval 20750 cnmptcom 22936 hmeof1o2 23021 ordthmeo 23060 isclmi0 24368 iscvsi 24399 cxplt2 25960 axcontlem8 27629 vcdi 29216 isvciOLD 29231 dipdi 29494 dipsubdi 29500 hvadd12 29686 hvmulcom 29694 his5 29737 bcs3 29834 chj12 30185 spansnmul 30215 homul12 30456 hoaddsub 30467 lnopmul 30618 lnopaddmuli 30624 lnopsubmuli 30626 lnfnaddmuli 30696 leop2 30775 dmdsl3 30966 chirredlem3 31043 atmd2 31051 cdj3lem3 31089 signstfvc 32853 naddel1 34126 naddss1 34128 sleadd1im 34250 sltadd2 34254 addscan2 34256 3com12d 34638 cnambfre 35981 sdclem2 36056 addrcom 42466 uun123p1 42802 sineq0ALT 42930 stoweidlem17 43946 sigaras 44774 sigarms 44775 i0oii 46631 |
Copyright terms: Public domain | W3C validator |