![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1118 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3comr 1124 3com23 1125 brelrng 5955 fnunres2 6682 fresaunres1 6782 fvun2 7001 onfununi 8380 oaword 8586 nnaword 8664 nnmword 8670 naddel1 8724 naddss1 8726 ecopovtrn 8859 fpmg 8907 tskord 10818 ltadd2 11363 mul12 11424 add12 11477 addsub 11517 addsubeq4 11521 ppncan 11549 leadd1 11729 ltaddsub2 11736 leaddsub2 11738 ltsub1 11757 ltsub2 11758 div23 11939 ltmul1 12115 ltmulgt11 12125 lediv1 12131 lemuldiv 12146 ltdiv2 12152 zdiv 12686 xltadd1 13295 xltmul1 13331 iooneg 13508 icoshft 13510 fzaddel 13595 fzshftral 13652 modmulmodr 13975 facwordi 14325 pfxeq 14731 abssubge0 15363 climshftlem 15607 dvdsmul1 16312 divalglem8 16434 divalgb 16438 rprpwr 16593 lcmgcdeq 16646 pcfac 16933 mhmmulg 19146 rmodislmodlem 20944 xrsdsreval 21447 cnmptcom 23702 hmeof1o2 23787 ordthmeo 23826 isclmi0 25145 iscvsi 25176 cxplt2 26755 sleadd1im 28035 sltadd2 28039 addscan2 28041 axcontlem8 29001 vcdi 30594 isvciOLD 30609 dipdi 30872 dipsubdi 30878 hvadd12 31064 hvmulcom 31072 his5 31115 bcs3 31212 chj12 31563 spansnmul 31593 homul12 31834 hoaddsub 31845 lnopmul 31996 lnopaddmuli 32002 lnopsubmuli 32004 lnfnaddmuli 32074 leop2 32153 dmdsl3 32344 chirredlem3 32421 atmd2 32429 cdj3lem3 32467 signstfvc 34568 3com12d 36293 cnambfre 37655 sdclem2 37729 indstrd 42175 addrcom 44471 uun123p1 44807 sineq0ALT 44935 stoweidlem17 45973 sigaras 46811 sigarms 46812 i0oii 48716 |
Copyright terms: Public domain | W3C validator |