![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp21 1114 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3comr 1125 3com23 1126 brelrng 5966 fnunres2 6692 fresaunres1 6794 fvun2 7014 onfununi 8397 oaword 8605 nnaword 8683 nnmword 8689 naddel1 8743 naddss1 8745 ecopovtrn 8878 fpmg 8926 tskord 10849 ltadd2 11394 mul12 11455 add12 11507 addsub 11547 addsubeq4 11551 ppncan 11578 leadd1 11758 ltaddsub2 11765 leaddsub2 11767 ltsub1 11786 ltsub2 11787 div23 11968 ltmul1 12144 ltmulgt11 12154 lediv1 12160 lemuldiv 12175 ltdiv2 12181 zdiv 12713 xltadd1 13318 xltmul1 13354 iooneg 13531 icoshft 13533 fzaddel 13618 fzshftral 13672 modmulmodr 13988 facwordi 14338 pfxeq 14744 abssubge0 15376 climshftlem 15620 dvdsmul1 16326 divalglem8 16448 divalgb 16452 rprpwr 16606 lcmgcdeq 16659 pcfac 16946 mhmmulg 19155 rmodislmodlem 20949 xrsdsreval 21452 cnmptcom 23707 hmeof1o2 23792 ordthmeo 23831 isclmi0 25150 iscvsi 25181 cxplt2 26758 sleadd1im 28038 sltadd2 28042 addscan2 28044 axcontlem8 29004 vcdi 30597 isvciOLD 30612 dipdi 30875 dipsubdi 30881 hvadd12 31067 hvmulcom 31075 his5 31118 bcs3 31215 chj12 31566 spansnmul 31596 homul12 31837 hoaddsub 31848 lnopmul 31999 lnopaddmuli 32005 lnopsubmuli 32007 lnfnaddmuli 32077 leop2 32156 dmdsl3 32347 chirredlem3 32424 atmd2 32432 cdj3lem3 32470 signstfvc 34551 3com12d 36276 cnambfre 37628 sdclem2 37702 indstrd 42150 addrcom 44444 uun123p1 44780 sineq0ALT 44908 stoweidlem17 45938 sigaras 46776 sigarms 46777 i0oii 48599 |
Copyright terms: Public domain | W3C validator |