![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1120 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp21 1115 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3comr 1126 3com23 1127 brelrng 5941 fnunres2 6663 fresaunres1 6765 fvun2 6984 onfununi 8341 oaword 8549 nnaword 8627 nnmword 8633 naddel1 8686 naddss1 8688 ecopovtrn 8814 fpmg 8862 tskord 10775 ltadd2 11318 mul12 11379 add12 11431 addsub 11471 addsubeq4 11475 ppncan 11502 leadd1 11682 ltaddsub2 11689 leaddsub2 11691 ltsub1 11710 ltsub2 11711 div23 11891 ltmul1 12064 ltmulgt11 12074 lediv1 12079 lemuldiv 12094 ltdiv2 12100 zdiv 12632 xltadd1 13235 xltmul1 13271 iooneg 13448 icoshft 13450 fzaddel 13535 fzshftral 13589 modmulmodr 13902 facwordi 14249 pfxeq 14646 abssubge0 15274 climshftlem 15518 dvdsmul1 16221 divalglem8 16343 divalgb 16347 rprpwr 16500 lcmgcdeq 16549 pcfac 16832 mhmmulg 18995 rmodislmodlem 20539 xrsdsreval 20990 cnmptcom 23182 hmeof1o2 23267 ordthmeo 23306 isclmi0 24614 iscvsi 24645 cxplt2 26206 sleadd1im 27473 sltadd2 27477 addscan2 27479 axcontlem8 28260 vcdi 29849 isvciOLD 29864 dipdi 30127 dipsubdi 30133 hvadd12 30319 hvmulcom 30327 his5 30370 bcs3 30467 chj12 30818 spansnmul 30848 homul12 31089 hoaddsub 31100 lnopmul 31251 lnopaddmuli 31257 lnopsubmuli 31259 lnfnaddmuli 31329 leop2 31408 dmdsl3 31599 chirredlem3 31676 atmd2 31684 cdj3lem3 31722 signstfvc 33616 3com12d 35243 cnambfre 36584 sdclem2 36658 addrcom 43282 uun123p1 43618 sineq0ALT 43746 stoweidlem17 44781 sigaras 45619 sigarms 45620 i0oii 47600 |
Copyright terms: Public domain | W3C validator |