Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1118 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3comr 1124 3com23 1125 brelrng 5853 fresaunres1 6656 fvun2 6869 onfununi 8181 oaword 8389 nnaword 8467 nnmword 8473 ecopovtrn 8618 fpmg 8665 tskord 10545 ltadd2 11088 mul12 11149 add12 11201 addsub 11241 addsubeq4 11245 ppncan 11272 leadd1 11452 ltaddsub2 11459 leaddsub2 11461 ltsub1 11480 ltsub2 11481 div23 11661 ltmul1 11834 ltmulgt11 11844 lediv1 11849 lemuldiv 11864 ltdiv2 11870 zdiv 12399 xltadd1 12999 xltmul1 13035 iooneg 13212 icoshft 13214 fzaddel 13299 fzshftral 13353 modmulmodr 13666 facwordi 14012 pfxeq 14418 abssubge0 15048 climshftlem 15292 dvdsmul1 15996 divalglem8 16118 divalgb 16122 rprpwr 16277 lcmgcdeq 16326 pcfac 16609 mhmmulg 18753 rmodislmodlem 20199 xrsdsreval 20652 cnmptcom 22838 hmeof1o2 22923 ordthmeo 22962 isclmi0 24270 iscvsi 24301 cxplt2 25862 axcontlem8 27348 vcdi 28936 isvciOLD 28951 dipdi 29214 dipsubdi 29220 hvadd12 29406 hvmulcom 29414 his5 29457 bcs3 29554 chj12 29905 spansnmul 29935 homul12 30176 hoaddsub 30187 lnopmul 30338 lnopaddmuli 30344 lnopsubmuli 30346 lnfnaddmuli 30416 leop2 30495 dmdsl3 30686 chirredlem3 30763 atmd2 30771 cdj3lem3 30809 signstfvc 32562 naddel1 33848 naddss1 33850 3com12d 34508 cnambfre 35834 sdclem2 35909 addrcom 42100 uun123p1 42436 sineq0ALT 42564 stoweidlem17 43565 sigaras 44382 sigarms 44383 i0oii 46224 |
Copyright terms: Public domain | W3C validator |