| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3com23 1126 brelrng 5887 fnunres2 6599 fresaunres1 6701 fvun2 6919 onfununi 8271 oaword 8474 nnaword 8552 nnmword 8558 naddel1 8612 naddss1 8614 ecopovtrn 8754 fpmg 8802 tskord 10693 ltadd2 11238 mul12 11299 add12 11352 addsub 11392 addsubeq4 11396 ppncan 11424 leadd1 11606 ltaddsub2 11613 leaddsub2 11615 ltsub1 11634 ltsub2 11635 div23 11816 ltmul1 11992 ltmulgt11 12002 lediv1 12008 lemuldiv 12023 ltdiv2 12029 zdiv 12564 xltadd1 13176 xltmul1 13212 iooneg 13392 icoshft 13394 fzaddel 13479 fzshftral 13536 modmulmodr 13862 facwordi 14214 pfxeq 14620 abssubge0 15253 climshftlem 15499 dvdsmul1 16206 divalglem8 16329 divalgb 16333 rprpwr 16488 lcmgcdeq 16541 pcfac 16829 mhmmulg 19012 rmodislmodlem 20850 xrsdsreval 21336 cnmptcom 23581 hmeof1o2 23666 ordthmeo 23705 isclmi0 25014 iscvsi 25045 cxplt2 26623 sleadd1im 27917 sltadd2 27921 addscan2 27923 axcontlem8 28934 vcdi 30527 isvciOLD 30542 dipdi 30805 dipsubdi 30811 hvadd12 30997 hvmulcom 31005 his5 31048 bcs3 31145 chj12 31496 spansnmul 31526 homul12 31767 hoaddsub 31778 lnopmul 31929 lnopaddmuli 31935 lnopsubmuli 31937 lnfnaddmuli 32007 leop2 32086 dmdsl3 32277 chirredlem3 32354 atmd2 32362 cdj3lem3 32400 signstfvc 34544 3com12d 36286 cnambfre 37650 sdclem2 37724 indstrd 42169 addrcom 44451 uun123p1 44785 sineq0ALT 44913 stoweidlem17 46002 sigaras 46840 sigarms 46841 i0oii 48908 |
| Copyright terms: Public domain | W3C validator |