| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3com23 1126 brelrng 5894 fnunres2 6613 fresaunres1 6715 fvun2 6935 onfununi 8287 oaword 8490 nnaword 8568 nnmword 8574 naddel1 8628 naddss1 8630 ecopovtrn 8770 fpmg 8818 tskord 10709 ltadd2 11254 mul12 11315 add12 11368 addsub 11408 addsubeq4 11412 ppncan 11440 leadd1 11622 ltaddsub2 11629 leaddsub2 11631 ltsub1 11650 ltsub2 11651 div23 11832 ltmul1 12008 ltmulgt11 12018 lediv1 12024 lemuldiv 12039 ltdiv2 12045 zdiv 12580 xltadd1 13192 xltmul1 13228 iooneg 13408 icoshft 13410 fzaddel 13495 fzshftral 13552 modmulmodr 13878 facwordi 14230 pfxeq 14637 abssubge0 15270 climshftlem 15516 dvdsmul1 16223 divalglem8 16346 divalgb 16350 rprpwr 16505 lcmgcdeq 16558 pcfac 16846 mhmmulg 19023 rmodislmodlem 20811 xrsdsreval 21304 cnmptcom 23541 hmeof1o2 23626 ordthmeo 23665 isclmi0 24974 iscvsi 25005 cxplt2 26583 sleadd1im 27870 sltadd2 27874 addscan2 27876 axcontlem8 28874 vcdi 30467 isvciOLD 30482 dipdi 30745 dipsubdi 30751 hvadd12 30937 hvmulcom 30945 his5 30988 bcs3 31085 chj12 31436 spansnmul 31466 homul12 31707 hoaddsub 31718 lnopmul 31869 lnopaddmuli 31875 lnopsubmuli 31877 lnfnaddmuli 31947 leop2 32026 dmdsl3 32217 chirredlem3 32294 atmd2 32302 cdj3lem3 32340 signstfvc 34538 3com12d 36271 cnambfre 37635 sdclem2 37709 indstrd 42154 addrcom 44437 uun123p1 44771 sineq0ALT 44899 stoweidlem17 45988 sigaras 46826 sigarms 46827 i0oii 48881 |
| Copyright terms: Public domain | W3C validator |