Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version |
Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1117 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | 3imp21 1112 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3comr 1123 3com23 1124 brelrng 5839 fresaunres1 6631 fvun2 6842 onfununi 8143 oaword 8342 nnaword 8420 nnmword 8426 ecopovtrn 8567 fpmg 8614 tskord 10467 ltadd2 11009 mul12 11070 add12 11122 addsub 11162 addsubeq4 11166 ppncan 11193 leadd1 11373 ltaddsub2 11380 leaddsub2 11382 ltsub1 11401 ltsub2 11402 div23 11582 ltmul1 11755 ltmulgt11 11765 lediv1 11770 lemuldiv 11785 ltdiv2 11791 zdiv 12320 xltadd1 12919 xltmul1 12955 iooneg 13132 icoshft 13134 fzaddel 13219 fzshftral 13273 modmulmodr 13585 facwordi 13931 pfxeq 14337 abssubge0 14967 climshftlem 15211 dvdsmul1 15915 divalglem8 16037 divalgb 16041 rprpwr 16196 lcmgcdeq 16245 pcfac 16528 mhmmulg 18659 rmodislmodlem 20105 xrsdsreval 20555 cnmptcom 22737 hmeof1o2 22822 ordthmeo 22861 isclmi0 24167 iscvsi 24198 cxplt2 25758 axcontlem8 27242 vcdi 28828 isvciOLD 28843 dipdi 29106 dipsubdi 29112 hvadd12 29298 hvmulcom 29306 his5 29349 bcs3 29446 chj12 29797 spansnmul 29827 homul12 30068 hoaddsub 30079 lnopmul 30230 lnopaddmuli 30236 lnopsubmuli 30238 lnfnaddmuli 30308 leop2 30387 dmdsl3 30578 chirredlem3 30655 atmd2 30663 cdj3lem3 30701 signstfvc 32453 naddel1 33766 naddss1 33768 3com12d 34426 cnambfre 35752 sdclem2 35827 addrcom 41982 uun123p1 42318 sineq0ALT 42446 stoweidlem17 43448 sigaras 44258 sigarms 44259 i0oii 46101 |
Copyright terms: Public domain | W3C validator |