| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3com23 1126 brelrng 5908 fnunres2 6634 fresaunres1 6736 fvun2 6956 onfununi 8313 oaword 8516 nnaword 8594 nnmword 8600 naddel1 8654 naddss1 8656 ecopovtrn 8796 fpmg 8844 tskord 10740 ltadd2 11285 mul12 11346 add12 11399 addsub 11439 addsubeq4 11443 ppncan 11471 leadd1 11653 ltaddsub2 11660 leaddsub2 11662 ltsub1 11681 ltsub2 11682 div23 11863 ltmul1 12039 ltmulgt11 12049 lediv1 12055 lemuldiv 12070 ltdiv2 12076 zdiv 12611 xltadd1 13223 xltmul1 13259 iooneg 13439 icoshft 13441 fzaddel 13526 fzshftral 13583 modmulmodr 13909 facwordi 14261 pfxeq 14668 abssubge0 15301 climshftlem 15547 dvdsmul1 16254 divalglem8 16377 divalgb 16381 rprpwr 16536 lcmgcdeq 16589 pcfac 16877 mhmmulg 19054 rmodislmodlem 20842 xrsdsreval 21335 cnmptcom 23572 hmeof1o2 23657 ordthmeo 23696 isclmi0 25005 iscvsi 25036 cxplt2 26614 sleadd1im 27901 sltadd2 27905 addscan2 27907 axcontlem8 28905 vcdi 30501 isvciOLD 30516 dipdi 30779 dipsubdi 30785 hvadd12 30971 hvmulcom 30979 his5 31022 bcs3 31119 chj12 31470 spansnmul 31500 homul12 31741 hoaddsub 31752 lnopmul 31903 lnopaddmuli 31909 lnopsubmuli 31911 lnfnaddmuli 31981 leop2 32060 dmdsl3 32251 chirredlem3 32328 atmd2 32336 cdj3lem3 32374 signstfvc 34572 3com12d 36305 cnambfre 37669 sdclem2 37743 indstrd 42188 addrcom 44471 uun123p1 44805 sineq0ALT 44933 stoweidlem17 46022 sigaras 46860 sigarms 46861 i0oii 48912 |
| Copyright terms: Public domain | W3C validator |