| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3com23 1126 brelrng 5905 fnunres2 6631 fresaunres1 6733 fvun2 6953 onfununi 8310 oaword 8513 nnaword 8591 nnmword 8597 naddel1 8651 naddss1 8653 ecopovtrn 8793 fpmg 8841 tskord 10733 ltadd2 11278 mul12 11339 add12 11392 addsub 11432 addsubeq4 11436 ppncan 11464 leadd1 11646 ltaddsub2 11653 leaddsub2 11655 ltsub1 11674 ltsub2 11675 div23 11856 ltmul1 12032 ltmulgt11 12042 lediv1 12048 lemuldiv 12063 ltdiv2 12069 zdiv 12604 xltadd1 13216 xltmul1 13252 iooneg 13432 icoshft 13434 fzaddel 13519 fzshftral 13576 modmulmodr 13902 facwordi 14254 pfxeq 14661 abssubge0 15294 climshftlem 15540 dvdsmul1 16247 divalglem8 16370 divalgb 16374 rprpwr 16529 lcmgcdeq 16582 pcfac 16870 mhmmulg 19047 rmodislmodlem 20835 xrsdsreval 21328 cnmptcom 23565 hmeof1o2 23650 ordthmeo 23689 isclmi0 24998 iscvsi 25029 cxplt2 26607 sleadd1im 27894 sltadd2 27898 addscan2 27900 axcontlem8 28898 vcdi 30494 isvciOLD 30509 dipdi 30772 dipsubdi 30778 hvadd12 30964 hvmulcom 30972 his5 31015 bcs3 31112 chj12 31463 spansnmul 31493 homul12 31734 hoaddsub 31745 lnopmul 31896 lnopaddmuli 31902 lnopsubmuli 31904 lnfnaddmuli 31974 leop2 32053 dmdsl3 32244 chirredlem3 32321 atmd2 32329 cdj3lem3 32367 signstfvc 34565 3com12d 36298 cnambfre 37662 sdclem2 37736 indstrd 42181 addrcom 44464 uun123p1 44798 sineq0ALT 44926 stoweidlem17 46015 sigaras 46853 sigarms 46854 i0oii 48908 |
| Copyright terms: Public domain | W3C validator |