| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3com12 | Structured version Visualization version GIF version | ||
| Description: Commutation in antecedent. Swap 1st and 2nd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3com12 | ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | 3imp21 1113 | 1 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3comr 1125 3com23 1126 brelrng 5876 fnunres2 6589 fresaunres1 6691 fvun2 6909 onfununi 8256 oaword 8459 nnaword 8537 nnmword 8543 naddel1 8597 naddss1 8599 ecopovtrn 8739 fpmg 8787 tskord 10666 ltadd2 11212 mul12 11273 add12 11326 addsub 11366 addsubeq4 11370 ppncan 11398 leadd1 11580 ltaddsub2 11587 leaddsub2 11589 ltsub1 11608 ltsub2 11609 div23 11790 ltmul1 11966 ltmulgt11 11976 lediv1 11982 lemuldiv 11997 ltdiv2 12003 zdiv 12538 xltadd1 13150 xltmul1 13186 iooneg 13366 icoshft 13368 fzaddel 13453 fzshftral 13510 modmulmodr 13839 facwordi 14191 pfxeq 14598 abssubge0 15230 climshftlem 15476 dvdsmul1 16183 divalglem8 16306 divalgb 16310 rprpwr 16465 lcmgcdeq 16518 pcfac 16806 mhmmulg 19023 rmodislmodlem 20857 xrsdsreval 21343 cnmptcom 23588 hmeof1o2 23673 ordthmeo 23712 isclmi0 25020 iscvsi 25051 cxplt2 26629 sleadd1im 27925 sltadd2 27929 addscan2 27931 axcontlem8 28944 vcdi 30537 isvciOLD 30552 dipdi 30815 dipsubdi 30821 hvadd12 31007 hvmulcom 31015 his5 31058 bcs3 31155 chj12 31506 spansnmul 31536 homul12 31777 hoaddsub 31788 lnopmul 31939 lnopaddmuli 31945 lnopsubmuli 31947 lnfnaddmuli 32017 leop2 32096 dmdsl3 32287 chirredlem3 32364 atmd2 32372 cdj3lem3 32410 signstfvc 34579 3com12d 36344 cnambfre 37708 sdclem2 37782 indstrd 42226 addrcom 44507 uun123p1 44841 sineq0ALT 44969 stoweidlem17 46055 sigaras 46893 sigarms 46894 i0oii 48951 |
| Copyright terms: Public domain | W3C validator |