MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnngt1 Structured version   Visualization version   GIF version

Theorem expnngt1 14200
Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022.)
Assertion
Ref Expression
expnngt1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)

Proof of Theorem expnngt1
StepHypRef Expression
1 elznn 12570 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)))
2 2a1 28 . . . . . 6 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
32a1d 25 . . . . 5 (𝐵 ∈ ℕ → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4 nncn 12216 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
543ad2ant3 1135 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℂ)
6 recn 11196 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
763ad2ant2 1134 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp1 1136 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → -𝐵 ∈ ℕ0)
9 expneg2 14032 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
105, 7, 8, 9syl3anc 1371 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
1110breq2d 5159 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) ↔ 1 < (1 / (𝐴↑-𝐵))))
12 nnre 12215 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13 reexpcl 14040 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1412, 13sylan 580 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1514ancoms 459 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
1612adantl 482 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
17 nn0z 12579 . . . . . . . . . . . . 13 (-𝐵 ∈ ℕ0 → -𝐵 ∈ ℤ)
1817adantr 481 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → -𝐵 ∈ ℤ)
19 nngt0 12239 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 < 𝐴)
2019adantl 482 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < 𝐴)
21 expgt0 14057 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑-𝐵))
2216, 18, 20, 21syl3anc 1371 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < (𝐴↑-𝐵))
2315, 22jca 512 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
24233adant2 1131 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
25 reclt1 12105 . . . . . . . . 9 (((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
2624, 25syl 17 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
27123ad2ant3 1135 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
28 nnge1 12236 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
29283ad2ant3 1135 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ 𝐴)
3027, 8, 29expge1d 14126 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ (𝐴↑-𝐵))
31 1red 11211 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ∈ ℝ)
32153adant2 1131 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
3331, 32lenltd 11356 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) ↔ ¬ (𝐴↑-𝐵) < 1))
34 pm2.21 123 . . . . . . . . . 10 (¬ (𝐴↑-𝐵) < 1 → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3533, 34syl6bi 252 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ)))
3630, 35mpd 15 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3726, 36sylbird 259 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (1 / (𝐴↑-𝐵)) → 𝐵 ∈ ℕ))
3811, 37sylbid 239 . . . . . 6 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))
39383exp 1119 . . . . 5 (-𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
403, 39jaoi 855 . . . 4 ((𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4140impcom 408 . . 3 ((𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)) → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
421, 41sylbi 216 . 2 (𝐵 ∈ ℤ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
43423imp21 1114 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5147  (class class class)co 7405  cc 11104  cr 11105  0cc0 11106  1c1 11107   < clt 11244  cle 11245  -cneg 11441   / cdiv 11867  cn 12208  0cn0 12468  cz 12554  cexp 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-seq 13963  df-exp 14024
This theorem is referenced by:  expnngt1b  14201
  Copyright terms: Public domain W3C validator