MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnngt1 Structured version   Visualization version   GIF version

Theorem expnngt1 13329
Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022.)
Assertion
Ref Expression
expnngt1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)

Proof of Theorem expnngt1
StepHypRef Expression
1 elznn 11727 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)))
2 2a1 28 . . . . . 6 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
32a1d 25 . . . . 5 (𝐵 ∈ ℕ → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4 nncn 11366 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
543ad2ant3 1169 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℂ)
6 recn 10349 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
763ad2ant2 1168 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp1 1170 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → -𝐵 ∈ ℕ0)
9 expneg2 13170 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
105, 7, 8, 9syl3anc 1494 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
1110breq2d 4887 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) ↔ 1 < (1 / (𝐴↑-𝐵))))
12 nnre 11365 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13 reexpcl 13178 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1412, 13sylan 575 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1514ancoms 452 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
1612adantl 475 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
17 nn0z 11735 . . . . . . . . . . . . 13 (-𝐵 ∈ ℕ0 → -𝐵 ∈ ℤ)
1817adantr 474 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → -𝐵 ∈ ℤ)
19 nngt0 11390 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 < 𝐴)
2019adantl 475 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < 𝐴)
21 expgt0 13194 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑-𝐵))
2216, 18, 20, 21syl3anc 1494 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < (𝐴↑-𝐵))
2315, 22jca 507 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
24233adant2 1165 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
25 reclt1 11255 . . . . . . . . 9 (((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
2624, 25syl 17 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
27123ad2ant3 1169 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
28 nnge1 11387 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
29283ad2ant3 1169 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ 𝐴)
3027, 8, 29expge1d 13328 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ (𝐴↑-𝐵))
31 1red 10364 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ∈ ℝ)
32153adant2 1165 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
3331, 32lenltd 10509 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) ↔ ¬ (𝐴↑-𝐵) < 1))
34 pm2.21 121 . . . . . . . . . 10 (¬ (𝐴↑-𝐵) < 1 → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3533, 34syl6bi 245 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ)))
3630, 35mpd 15 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3726, 36sylbird 252 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (1 / (𝐴↑-𝐵)) → 𝐵 ∈ ℕ))
3811, 37sylbid 232 . . . . . 6 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))
39383exp 1152 . . . . 5 (-𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
403, 39jaoi 888 . . . 4 ((𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4140impcom 398 . . 3 ((𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)) → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
421, 41sylbi 209 . 2 (𝐵 ∈ ℤ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
43423imp21 1145 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878  w3a 1111   = wceq 1656  wcel 2164   class class class wbr 4875  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  1c1 10260   < clt 10398  cle 10399  -cneg 10593   / cdiv 11016  cn 11357  0cn0 11625  cz 11711  cexp 13161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-seq 13103  df-exp 13162
This theorem is referenced by:  expnngt1b  13330
  Copyright terms: Public domain W3C validator