MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnngt1 Structured version   Visualization version   GIF version

Theorem expnngt1 14182
Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022.)
Assertion
Ref Expression
expnngt1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)

Proof of Theorem expnngt1
StepHypRef Expression
1 elznn 12521 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)))
2 2a1 28 . . . . . 6 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
32a1d 25 . . . . 5 (𝐵 ∈ ℕ → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4 nncn 12170 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
543ad2ant3 1135 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℂ)
6 recn 11134 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
763ad2ant2 1134 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp1 1136 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → -𝐵 ∈ ℕ0)
9 expneg2 14011 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
105, 7, 8, 9syl3anc 1373 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
1110breq2d 5114 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) ↔ 1 < (1 / (𝐴↑-𝐵))))
12 nnre 12169 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13 reexpcl 14019 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1412, 13sylan 580 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1514ancoms 458 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
1612adantl 481 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
17 nn0z 12530 . . . . . . . . . . . . 13 (-𝐵 ∈ ℕ0 → -𝐵 ∈ ℤ)
1817adantr 480 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → -𝐵 ∈ ℤ)
19 nngt0 12193 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 < 𝐴)
2019adantl 481 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < 𝐴)
21 expgt0 14036 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑-𝐵))
2216, 18, 20, 21syl3anc 1373 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < (𝐴↑-𝐵))
2315, 22jca 511 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
24233adant2 1131 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
25 reclt1 12054 . . . . . . . . 9 (((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
2624, 25syl 17 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
27123ad2ant3 1135 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
28 nnge1 12190 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
29283ad2ant3 1135 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ 𝐴)
3027, 8, 29expge1d 14106 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ (𝐴↑-𝐵))
31 1red 11151 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ∈ ℝ)
32153adant2 1131 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
3331, 32lenltd 11296 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) ↔ ¬ (𝐴↑-𝐵) < 1))
34 pm2.21 123 . . . . . . . . . 10 (¬ (𝐴↑-𝐵) < 1 → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3533, 34biimtrdi 253 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ)))
3630, 35mpd 15 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3726, 36sylbird 260 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (1 / (𝐴↑-𝐵)) → 𝐵 ∈ ℕ))
3811, 37sylbid 240 . . . . . 6 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))
39383exp 1119 . . . . 5 (-𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
403, 39jaoi 857 . . . 4 ((𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4140impcom 407 . . 3 ((𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)) → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
421, 41sylbi 217 . 2 (𝐵 ∈ ℤ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
43423imp21 1113 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185  -cneg 11382   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003
This theorem is referenced by:  expnngt1b  14183
  Copyright terms: Public domain W3C validator