MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnngt1 Structured version   Visualization version   GIF version

Theorem expnngt1 14264
Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022.)
Assertion
Ref Expression
expnngt1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)

Proof of Theorem expnngt1
StepHypRef Expression
1 elznn 12609 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)))
2 2a1 28 . . . . . 6 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
32a1d 25 . . . . 5 (𝐵 ∈ ℕ → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4 nncn 12253 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
543ad2ant3 1135 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℂ)
6 recn 11224 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
763ad2ant2 1134 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp1 1136 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → -𝐵 ∈ ℕ0)
9 expneg2 14093 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
105, 7, 8, 9syl3anc 1373 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
1110breq2d 5136 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) ↔ 1 < (1 / (𝐴↑-𝐵))))
12 nnre 12252 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13 reexpcl 14101 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1412, 13sylan 580 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1514ancoms 458 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
1612adantl 481 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
17 nn0z 12618 . . . . . . . . . . . . 13 (-𝐵 ∈ ℕ0 → -𝐵 ∈ ℤ)
1817adantr 480 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → -𝐵 ∈ ℤ)
19 nngt0 12276 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 < 𝐴)
2019adantl 481 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < 𝐴)
21 expgt0 14118 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑-𝐵))
2216, 18, 20, 21syl3anc 1373 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < (𝐴↑-𝐵))
2315, 22jca 511 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
24233adant2 1131 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
25 reclt1 12142 . . . . . . . . 9 (((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
2624, 25syl 17 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
27123ad2ant3 1135 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
28 nnge1 12273 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
29283ad2ant3 1135 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ 𝐴)
3027, 8, 29expge1d 14188 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ (𝐴↑-𝐵))
31 1red 11241 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ∈ ℝ)
32153adant2 1131 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
3331, 32lenltd 11386 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) ↔ ¬ (𝐴↑-𝐵) < 1))
34 pm2.21 123 . . . . . . . . . 10 (¬ (𝐴↑-𝐵) < 1 → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3533, 34biimtrdi 253 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ)))
3630, 35mpd 15 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3726, 36sylbird 260 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (1 / (𝐴↑-𝐵)) → 𝐵 ∈ ℕ))
3811, 37sylbid 240 . . . . . 6 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))
39383exp 1119 . . . . 5 (-𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
403, 39jaoi 857 . . . 4 ((𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4140impcom 407 . . 3 ((𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)) → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
421, 41sylbi 217 . 2 (𝐵 ∈ ℤ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
43423imp21 1113 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   < clt 11274  cle 11275  -cneg 11472   / cdiv 11899  cn 12245  0cn0 12506  cz 12593  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085
This theorem is referenced by:  expnngt1b  14265
  Copyright terms: Public domain W3C validator