MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnngt1 Structured version   Visualization version   GIF version

Theorem expnngt1 13603
Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022.)
Assertion
Ref Expression
expnngt1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)

Proof of Theorem expnngt1
StepHypRef Expression
1 elznn 11998 . . 3 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)))
2 2a1 28 . . . . . 6 (𝐵 ∈ ℕ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
32a1d 25 . . . . 5 (𝐵 ∈ ℕ → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4 nncn 11646 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
543ad2ant3 1131 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℂ)
6 recn 10627 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
763ad2ant2 1130 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp1 1132 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → -𝐵 ∈ ℕ0)
9 expneg2 13439 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℕ0) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
105, 7, 8, 9syl3anc 1367 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴𝐵) = (1 / (𝐴↑-𝐵)))
1110breq2d 5078 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) ↔ 1 < (1 / (𝐴↑-𝐵))))
12 nnre 11645 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
13 reexpcl 13447 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1412, 13sylan 582 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ -𝐵 ∈ ℕ0) → (𝐴↑-𝐵) ∈ ℝ)
1514ancoms 461 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
1612adantl 484 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
17 nn0z 12006 . . . . . . . . . . . . 13 (-𝐵 ∈ ℕ0 → -𝐵 ∈ ℤ)
1817adantr 483 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → -𝐵 ∈ ℤ)
19 nngt0 11669 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 < 𝐴)
2019adantl 484 . . . . . . . . . . . 12 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < 𝐴)
21 expgt0 13463 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ -𝐵 ∈ ℤ ∧ 0 < 𝐴) → 0 < (𝐴↑-𝐵))
2216, 18, 20, 21syl3anc 1367 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → 0 < (𝐴↑-𝐵))
2315, 22jca 514 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
24233adant2 1127 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)))
25 reclt1 11535 . . . . . . . . 9 (((𝐴↑-𝐵) ∈ ℝ ∧ 0 < (𝐴↑-𝐵)) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
2624, 25syl 17 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 ↔ 1 < (1 / (𝐴↑-𝐵))))
27123ad2ant3 1131 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
28 nnge1 11666 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
29283ad2ant3 1131 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ 𝐴)
3027, 8, 29expge1d 13530 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ≤ (𝐴↑-𝐵))
31 1red 10642 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → 1 ∈ ℝ)
32153adant2 1127 . . . . . . . . . . 11 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴↑-𝐵) ∈ ℝ)
3331, 32lenltd 10786 . . . . . . . . . 10 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) ↔ ¬ (𝐴↑-𝐵) < 1))
34 pm2.21 123 . . . . . . . . . 10 (¬ (𝐴↑-𝐵) < 1 → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3533, 34syl6bi 255 . . . . . . . . 9 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 ≤ (𝐴↑-𝐵) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ)))
3630, 35mpd 15 . . . . . . . 8 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → ((𝐴↑-𝐵) < 1 → 𝐵 ∈ ℕ))
3726, 36sylbird 262 . . . . . . 7 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (1 / (𝐴↑-𝐵)) → 𝐵 ∈ ℕ))
3811, 37sylbid 242 . . . . . 6 ((-𝐵 ∈ ℕ0𝐵 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))
39383exp 1115 . . . . 5 (-𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
403, 39jaoi 853 . . . 4 ((𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0) → (𝐵 ∈ ℝ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ))))
4140impcom 410 . . 3 ((𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ ∨ -𝐵 ∈ ℕ0)) → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
421, 41sylbi 219 . 2 (𝐵 ∈ ℤ → (𝐴 ∈ ℕ → (1 < (𝐴𝐵) → 𝐵 ∈ ℕ)))
43423imp21 1110 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴𝐵)) → 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5066  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   < clt 10675  cle 10676  -cneg 10871   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-seq 13371  df-exp 13431
This theorem is referenced by:  expnngt1b  13604
  Copyright terms: Public domain W3C validator