![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotri3 | Structured version Visualization version GIF version |
Description: A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵 ≤ 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
sotri3 | ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
2 | 1 | brel 5506 | . . . 4 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
3 | 2 | simprd 496 | . . 3 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ 𝑆) |
4 | soi.1 | . . . . . . 7 ⊢ 𝑅 Or 𝑆 | |
5 | sotric 5392 | . . . . . . 7 ⊢ ((𝑅 Or 𝑆 ∧ (𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) | |
6 | 4, 5 | mpan 686 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) |
7 | 6 | con2bid 356 | . . . . 5 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐶 = 𝐵 ∨ 𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵)) |
8 | breq2 4968 | . . . . . . 7 ⊢ (𝐶 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐴𝑅𝐵)) | |
9 | 8 | biimprd 249 | . . . . . 6 ⊢ (𝐶 = 𝐵 → (𝐴𝑅𝐵 → 𝐴𝑅𝐶)) |
10 | 4, 1 | sotri 5866 | . . . . . . 7 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
11 | 10 | expcom 414 | . . . . . 6 ⊢ (𝐵𝑅𝐶 → (𝐴𝑅𝐵 → 𝐴𝑅𝐶)) |
12 | 9, 11 | jaoi 852 | . . . . 5 ⊢ ((𝐶 = 𝐵 ∨ 𝐵𝑅𝐶) → (𝐴𝑅𝐵 → 𝐴𝑅𝐶)) |
13 | 7, 12 | syl6bir 255 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (¬ 𝐶𝑅𝐵 → (𝐴𝑅𝐵 → 𝐴𝑅𝐶))) |
14 | 13 | com3r 87 | . . 3 ⊢ (𝐴𝑅𝐵 → ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (¬ 𝐶𝑅𝐵 → 𝐴𝑅𝐶))) |
15 | 3, 14 | mpan2d 690 | . 2 ⊢ (𝐴𝑅𝐵 → (𝐶 ∈ 𝑆 → (¬ 𝐶𝑅𝐵 → 𝐴𝑅𝐶))) |
16 | 15 | 3imp21 1107 | 1 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 ∧ w3a 1080 = wceq 1522 ∈ wcel 2080 ⊆ wss 3861 class class class wbr 4964 Or wor 5364 × cxp 5444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pr 5224 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-br 4965 df-opab 5027 df-po 5365 df-so 5366 df-xp 5452 |
This theorem is referenced by: archnq 10251 |
Copyright terms: Public domain | W3C validator |