MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotri3 Structured version   Visualization version   GIF version

Theorem sotri3 6032
Description: A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)

Proof of Theorem sotri3
StepHypRef Expression
1 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 5651 . . . 4 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
32simprd 495 . . 3 (𝐴𝑅𝐵𝐵𝑆)
4 soi.1 . . . . . . 7 𝑅 Or 𝑆
5 sotric 5530 . . . . . . 7 ((𝑅 Or 𝑆 ∧ (𝐶𝑆𝐵𝑆)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
64, 5mpan 686 . . . . . 6 ((𝐶𝑆𝐵𝑆) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
76con2bid 354 . . . . 5 ((𝐶𝑆𝐵𝑆) → ((𝐶 = 𝐵𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵))
8 breq2 5082 . . . . . . 7 (𝐶 = 𝐵 → (𝐴𝑅𝐶𝐴𝑅𝐵))
98biimprd 247 . . . . . 6 (𝐶 = 𝐵 → (𝐴𝑅𝐵𝐴𝑅𝐶))
104, 1sotri 6029 . . . . . . 7 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
1110expcom 413 . . . . . 6 (𝐵𝑅𝐶 → (𝐴𝑅𝐵𝐴𝑅𝐶))
129, 11jaoi 853 . . . . 5 ((𝐶 = 𝐵𝐵𝑅𝐶) → (𝐴𝑅𝐵𝐴𝑅𝐶))
137, 12syl6bir 253 . . . 4 ((𝐶𝑆𝐵𝑆) → (¬ 𝐶𝑅𝐵 → (𝐴𝑅𝐵𝐴𝑅𝐶)))
1413com3r 87 . . 3 (𝐴𝑅𝐵 → ((𝐶𝑆𝐵𝑆) → (¬ 𝐶𝑅𝐵𝐴𝑅𝐶)))
153, 14mpan2d 690 . 2 (𝐴𝑅𝐵 → (𝐶𝑆 → (¬ 𝐶𝑅𝐵𝐴𝑅𝐶)))
16153imp21 1112 1 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1541  wcel 2109  wss 3891   class class class wbr 5078   Or wor 5501   × cxp 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-po 5502  df-so 5503  df-xp 5594
This theorem is referenced by:  archnq  10720
  Copyright terms: Public domain W3C validator