![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sotri3 | Structured version Visualization version GIF version |
Description: A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵 ≤ 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
sotri3 | ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soi.2 | . . . . 5 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
2 | 1 | brel 5742 | . . . 4 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
3 | 2 | simprd 497 | . . 3 ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ 𝑆) |
4 | soi.1 | . . . . . . 7 ⊢ 𝑅 Or 𝑆 | |
5 | sotric 5617 | . . . . . . 7 ⊢ ((𝑅 Or 𝑆 ∧ (𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) | |
6 | 4, 5 | mpan 689 | . . . . . 6 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵 ∨ 𝐵𝑅𝐶))) |
7 | 6 | con2bid 355 | . . . . 5 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐶 = 𝐵 ∨ 𝐵𝑅𝐶) ↔ ¬ 𝐶𝑅𝐵)) |
8 | breq2 5153 | . . . . . . 7 ⊢ (𝐶 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐴𝑅𝐵)) | |
9 | 8 | biimprd 247 | . . . . . 6 ⊢ (𝐶 = 𝐵 → (𝐴𝑅𝐵 → 𝐴𝑅𝐶)) |
10 | 4, 1 | sotri 6129 | . . . . . . 7 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
11 | 10 | expcom 415 | . . . . . 6 ⊢ (𝐵𝑅𝐶 → (𝐴𝑅𝐵 → 𝐴𝑅𝐶)) |
12 | 9, 11 | jaoi 856 | . . . . 5 ⊢ ((𝐶 = 𝐵 ∨ 𝐵𝑅𝐶) → (𝐴𝑅𝐵 → 𝐴𝑅𝐶)) |
13 | 7, 12 | syl6bir 254 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (¬ 𝐶𝑅𝐵 → (𝐴𝑅𝐵 → 𝐴𝑅𝐶))) |
14 | 13 | com3r 87 | . . 3 ⊢ (𝐴𝑅𝐵 → ((𝐶 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (¬ 𝐶𝑅𝐵 → 𝐴𝑅𝐶))) |
15 | 3, 14 | mpan2d 693 | . 2 ⊢ (𝐴𝑅𝐵 → (𝐶 ∈ 𝑆 → (¬ 𝐶𝑅𝐵 → 𝐴𝑅𝐶))) |
16 | 15 | 3imp21 1115 | 1 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 class class class wbr 5149 Or wor 5588 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-po 5589 df-so 5590 df-xp 5683 |
This theorem is referenced by: archnq 10975 |
Copyright terms: Public domain | W3C validator |