MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkinwwlk Structured version   Visualization version   GIF version

Theorem clwwlkinwwlk 30072
Description: If the initial vertex of a walk occurs another time in the walk, the walk starts with a closed walk. Since the walk is expressed as a word over vertices, the closed walk can be expressed as a subword of this word. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 23-Jan-2022.) (Revised by AV, 30-Oct-2022.)
Assertion
Ref Expression
clwwlkinwwlk (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ 𝑊 ∈ (𝑀 WWalksN 𝐺) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺))

Proof of Theorem clwwlkinwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2740 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2wwlknp 29876 . 2 (𝑊 ∈ (𝑀 WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4 pfxcl 14725 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺))
54adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) → (𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺))
65adantr 480 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺))
7 simpll 766 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑊 ∈ Word (Vtx‘𝐺))
8 simprl 770 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ ℕ)
9 eluz2 12909 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
10 zre 12643 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
11 zre 12643 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
12 id 22 . . . . . . . . . . . . . . . . 17 (𝑁𝑀𝑁𝑀)
1310, 11, 123anim123i 1151 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁𝑀))
149, 13sylbi 217 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ𝑁) → (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁𝑀))
15 letrp1 12138 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁𝑀) → 𝑁 ≤ (𝑀 + 1))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ𝑁) → 𝑁 ≤ (𝑀 + 1))
1716adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ≤ (𝑀 + 1))
1817adantl 481 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ≤ (𝑀 + 1))
19 breq2 5170 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑀 + 1) → (𝑁 ≤ (♯‘𝑊) ↔ 𝑁 ≤ (𝑀 + 1)))
2019ad2antlr 726 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑁 ≤ (♯‘𝑊) ↔ 𝑁 ≤ (𝑀 + 1)))
2118, 20mpbird 257 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ≤ (♯‘𝑊))
22 pfxn0 14734 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑊 prefix 𝑁) ≠ ∅)
237, 8, 21, 22syl3anc 1371 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑊 prefix 𝑁) ≠ ∅)
246, 23jca 511 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → ((𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 prefix 𝑁) ≠ ∅))
25243adantl3 1168 . . . . . . . 8 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → ((𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 prefix 𝑁) ≠ ∅))
2625adantr 480 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → ((𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 prefix 𝑁) ≠ ∅))
27 nnz 12660 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
28 1nn0 12569 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ0
29 eluzmn 12910 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
3027, 28, 29sylancl 585 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
31 uzss 12926 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (ℤ𝑁) ⊆ (ℤ‘(𝑁 − 1)))
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (ℤ𝑁) ⊆ (ℤ‘(𝑁 − 1)))
3332sselda 4008 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ‘(𝑁 − 1)))
34 fzoss2 13744 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀))
3533, 34syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀))
36353ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑀))
37 ssralv 4077 . . . . . . . . . . . . 13 ((0..^(𝑁 − 1)) ⊆ (0..^𝑀) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
3836, 37syl 17 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
39383exp 1119 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = (𝑀 + 1) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
4039com34 91 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = (𝑀 + 1) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
41403imp1 1347 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))
4241adantr 480 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))
43 nnnn0 12560 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
44 elnn0uz 12948 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
4543, 44sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
46 eluzfz 13579 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘0) ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (0...𝑀))
4745, 46sylan 579 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (0...𝑀))
48 fzelp1 13636 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (0...𝑀) → 𝑁 ∈ (0...(𝑀 + 1)))
4947, 48syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (0...(𝑀 + 1)))
5049adantl 481 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...(𝑀 + 1)))
51 oveq2 7456 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) = (𝑀 + 1) → (0...(♯‘𝑊)) = (0...(𝑀 + 1)))
5251eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑀 + 1) → (𝑁 ∈ (0...(♯‘𝑊)) ↔ 𝑁 ∈ (0...(𝑀 + 1))))
5352ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑁 ∈ (0...(♯‘𝑊)) ↔ 𝑁 ∈ (0...(𝑀 + 1))))
5450, 53mpbird 257 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...(♯‘𝑊)))
55 pfxlen 14731 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑁)) = 𝑁)
567, 54, 55syl2anc 583 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (♯‘(𝑊 prefix 𝑁)) = 𝑁)
5756oveq1d 7463 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → ((♯‘(𝑊 prefix 𝑁)) − 1) = (𝑁 − 1))
5857oveq2d 7464 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (0..^((♯‘(𝑊 prefix 𝑁)) − 1)) = (0..^(𝑁 − 1)))
5958raleqdv 3334 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
607adantr 480 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
6154adantr 480 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...(♯‘𝑊)))
6230ad2antrl 727 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
63 fzoss2 13744 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
6564sselda 4008 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → 𝑖 ∈ (0..^𝑁))
66 pfxfv 14730 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑊 prefix 𝑁)‘𝑖) = (𝑊𝑖))
6760, 61, 65, 66syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑊 prefix 𝑁)‘𝑖) = (𝑊𝑖))
6827ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ ℤ)
69 elfzom1elp1fzo 13783 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
7068, 69sylan 579 . . . . . . . . . . . . . . 15 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → (𝑖 + 1) ∈ (0..^𝑁))
71 pfxfv 14730 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ (𝑖 + 1) ∈ (0..^𝑁)) → ((𝑊 prefix 𝑁)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7260, 61, 70, 71syl3anc 1371 . . . . . . . . . . . . . 14 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ((𝑊 prefix 𝑁)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
7367, 72preq12d 4766 . . . . . . . . . . . . 13 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → {((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
7473eleq1d 2829 . . . . . . . . . . . 12 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 ∈ (0..^(𝑁 − 1))) → ({((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7574ralbidva 3182 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7659, 75bitrd 279 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
77763adantl3 1168 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7877adantr 480 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
7942, 78mpbird 257 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
80 elfz1uz 13654 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (1...𝑀))
81 fzelp1 13636 . . . . . . . . . . . . . 14 (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (1...(𝑀 + 1)))
8280, 81syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → 𝑁 ∈ (1...(𝑀 + 1)))
8382adantl 481 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (1...(𝑀 + 1)))
84 oveq2 7456 . . . . . . . . . . . . . 14 ((♯‘𝑊) = (𝑀 + 1) → (1...(♯‘𝑊)) = (1...(𝑀 + 1)))
8584eleq2d 2830 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑀 + 1) → (𝑁 ∈ (1...(♯‘𝑊)) ↔ 𝑁 ∈ (1...(𝑀 + 1))))
8685ad2antlr 726 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑁 ∈ (1...(♯‘𝑊)) ↔ 𝑁 ∈ (1...(𝑀 + 1))))
8783, 86mpbird 257 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (1...(♯‘𝑊)))
88 pfxfvlsw 14743 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 prefix 𝑁)) = (𝑊‘(𝑁 − 1)))
89 pfxfv0 14740 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 prefix 𝑁)‘0) = (𝑊‘0))
9088, 89preq12d 4766 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑊))) → {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
917, 87, 90syl2anc 583 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
92913adantl3 1168 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
9392adantr 480 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
94 fz1fzo0m1 13764 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1...𝑀) → (𝑁 − 1) ∈ (0..^𝑀))
9580, 94syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (𝑁 − 1) ∈ (0..^𝑀))
96953ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑁 − 1) ∈ (0..^𝑀))
97 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → 𝑖 = (𝑁 − 1))
9897fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑊𝑖) = (𝑊‘(𝑁 − 1)))
99 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑁 − 1) → (𝑖 + 1) = ((𝑁 − 1) + 1))
100 nncn 12301 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
101 npcan1 11715 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
10399, 102sylan9eqr 2802 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑖 + 1) = 𝑁)
104103fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → (𝑊‘(𝑖 + 1)) = (𝑊𝑁))
10598, 104preq12d 4766 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘(𝑁 − 1)), (𝑊𝑁)})
106105eleq1d 2829 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
107106ex 412 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → (𝑖 = (𝑁 − 1) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
108107adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (𝑖 = (𝑁 − 1) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
1091083ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑖 = (𝑁 − 1) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))))
110109imp 406 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ 𝑖 = (𝑁 − 1)) → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
11196, 110rspcdv 3627 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))
1121113exp 1119 . . . . . . . . . . . 12 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = (𝑀 + 1) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
113112com34 91 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = (𝑀 + 1) → (∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺)))))
1141133imp1 1347 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))
115114adantr 480 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺))
116 preq2 4759 . . . . . . . . . . 11 ((𝑊𝑁) = (𝑊‘0) → {(𝑊‘(𝑁 − 1)), (𝑊𝑁)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
117116eleq1d 2829 . . . . . . . . . 10 ((𝑊𝑁) = (𝑊‘0) → ({(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
118117adantl 481 . . . . . . . . 9 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → ({(𝑊‘(𝑁 − 1)), (𝑊𝑁)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
119115, 118mpbid 232 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
12093, 119eqeltrd 2844 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} ∈ (Edg‘𝐺))
12126, 79, 1203jca 1128 . . . . . 6 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) ∧ (𝑊𝑁) = (𝑊‘0)) → (((𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 prefix 𝑁) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)))
122121exp31 419 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → ((𝑊𝑁) = (𝑊‘0) → (((𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 prefix 𝑁) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)))))
1231223imp21 1114 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (((𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 prefix 𝑁) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)))
1241, 2isclwwlk 30016 . . . 4 ((𝑊 prefix 𝑁) ∈ (ClWWalks‘𝐺) ↔ (((𝑊 prefix 𝑁) ∈ Word (Vtx‘𝐺) ∧ (𝑊 prefix 𝑁) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 prefix 𝑁)) − 1)){((𝑊 prefix 𝑁)‘𝑖), ((𝑊 prefix 𝑁)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝑊 prefix 𝑁)), ((𝑊 prefix 𝑁)‘0)} ∈ (Edg‘𝐺)))
125123, 124sylibr 234 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 prefix 𝑁) ∈ (ClWWalks‘𝐺))
12647adantl 481 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...𝑀))
127126, 48syl 17 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...(𝑀 + 1)))
128127, 53mpbird 257 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → 𝑁 ∈ (0...(♯‘𝑊)))
1297, 128jca 511 . . . . . . . 8 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) ∧ (𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
130129ex 412 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))))
1311303adant3 1132 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊)))))
132131impcom 407 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
1331323adant3 1132 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
134133, 55syl 17 . . 3 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (♯‘(𝑊 prefix 𝑁)) = 𝑁)
135 isclwwlkn 30059 . . 3 ((𝑊 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((𝑊 prefix 𝑁) ∈ (ClWWalks‘𝐺) ∧ (♯‘(𝑊 prefix 𝑁)) = 𝑁))
136125, 134, 135sylanbrc 582 . 2 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑀 + 1) ∧ ∀𝑖 ∈ (0..^𝑀){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺))
1373, 136syl3an2 1164 1 (((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ𝑁)) ∧ 𝑊 ∈ (𝑀 WWalksN 𝐺) ∧ (𝑊𝑁) = (𝑊‘0)) → (𝑊 prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  lastSclsw 14610   prefix cpfx 14718  Vtxcvtx 29031  Edgcedg 29082   WWalksN cwwlksn 29859  ClWWalkscclwwlk 30013   ClWWalksN cclwwlkn 30056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-substr 14689  df-pfx 14719  df-wwlks 29863  df-wwlksn 29864  df-clwwlk 30014  df-clwwlkn 30057
This theorem is referenced by:  clwwnrepclwwn  30376
  Copyright terms: Public domain W3C validator