MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkinwwlk Structured version   Visualization version   GIF version

Theorem clwwlkinwwlk 29293
Description: If the initial vertex of a walk occurs another time in the walk, the walk starts with a closed walk. Since the walk is expressed as a word over vertices, the closed walk can be expressed as a subword of this word. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 23-Jan-2022.) (Revised by AV, 30-Oct-2022.)
Assertion
Ref Expression
clwwlkinwwlk (((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘Š ∈ (𝑀 WWalksN 𝐺) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (π‘Š prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺))

Proof of Theorem clwwlkinwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
2 eqid 2733 . . 3 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
31, 2wwlknp 29097 . 2 (π‘Š ∈ (𝑀 WWalksN 𝐺) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
4 pfxcl 14627 . . . . . . . . . . . 12 (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ (π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ))
54adantr 482 . . . . . . . . . . 11 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) β†’ (π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ))
65adantr 482 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ))
7 simpll 766 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ π‘Š ∈ Word (Vtxβ€˜πΊ))
8 simprl 770 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ β„•)
9 eluz2 12828 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (β„€β‰₯β€˜π‘) ↔ (𝑁 ∈ β„€ ∧ 𝑀 ∈ β„€ ∧ 𝑁 ≀ 𝑀))
10 zre 12562 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„€ β†’ 𝑁 ∈ ℝ)
11 zre 12562 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ β„€ β†’ 𝑀 ∈ ℝ)
12 id 22 . . . . . . . . . . . . . . . . 17 (𝑁 ≀ 𝑀 β†’ 𝑁 ≀ 𝑀)
1310, 11, 123anim123i 1152 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„€ ∧ 𝑀 ∈ β„€ ∧ 𝑁 ≀ 𝑀) β†’ (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≀ 𝑀))
149, 13sylbi 216 . . . . . . . . . . . . . . 15 (𝑀 ∈ (β„€β‰₯β€˜π‘) β†’ (𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≀ 𝑀))
15 letrp1 12058 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≀ 𝑀) β†’ 𝑁 ≀ (𝑀 + 1))
1614, 15syl 17 . . . . . . . . . . . . . 14 (𝑀 ∈ (β„€β‰₯β€˜π‘) β†’ 𝑁 ≀ (𝑀 + 1))
1716adantl 483 . . . . . . . . . . . . 13 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ≀ (𝑀 + 1))
1817adantl 483 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ≀ (𝑀 + 1))
19 breq2 5153 . . . . . . . . . . . . 13 ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ (𝑁 ≀ (β™―β€˜π‘Š) ↔ 𝑁 ≀ (𝑀 + 1)))
2019ad2antlr 726 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (𝑁 ≀ (β™―β€˜π‘Š) ↔ 𝑁 ≀ (𝑀 + 1)))
2118, 20mpbird 257 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ≀ (β™―β€˜π‘Š))
22 pfxn0 14636 . . . . . . . . . . 11 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ β„• ∧ 𝑁 ≀ (β™―β€˜π‘Š)) β†’ (π‘Š prefix 𝑁) β‰  βˆ…)
237, 8, 21, 22syl3anc 1372 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (π‘Š prefix 𝑁) β‰  βˆ…)
246, 23jca 513 . . . . . . . . 9 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ ((π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ) ∧ (π‘Š prefix 𝑁) β‰  βˆ…))
25243adantl3 1169 . . . . . . . 8 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ ((π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ) ∧ (π‘Š prefix 𝑁) β‰  βˆ…))
2625adantr 482 . . . . . . 7 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ ((π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ) ∧ (π‘Š prefix 𝑁) β‰  βˆ…))
27 nnz 12579 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„€)
28 1nn0 12488 . . . . . . . . . . . . . . . . . 18 1 ∈ β„•0
29 eluzmn 12829 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„€ ∧ 1 ∈ β„•0) β†’ 𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
3027, 28, 29sylancl 587 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„• β†’ 𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
31 uzss 12845 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)) β†’ (β„€β‰₯β€˜π‘) βŠ† (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ β„• β†’ (β„€β‰₯β€˜π‘) βŠ† (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
3332sselda 3983 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑀 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
34 fzoss2 13660 . . . . . . . . . . . . . . 15 (𝑀 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)) β†’ (0..^(𝑁 βˆ’ 1)) βŠ† (0..^𝑀))
3533, 34syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ (0..^(𝑁 βˆ’ 1)) βŠ† (0..^𝑀))
36353ad2ant3 1136 . . . . . . . . . . . . 13 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (0..^(𝑁 βˆ’ 1)) βŠ† (0..^𝑀))
37 ssralv 4051 . . . . . . . . . . . . 13 ((0..^(𝑁 βˆ’ 1)) βŠ† (0..^𝑀) β†’ (βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
3836, 37syl 17 . . . . . . . . . . . 12 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
39383exp 1120 . . . . . . . . . . 11 (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ (βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))))
4039com34 91 . . . . . . . . . 10 (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ (βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))))
41403imp1 1348 . . . . . . . . 9 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
4241adantr 482 . . . . . . . 8 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
43 nnnn0 12479 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„•0)
44 elnn0uz 12867 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„•0 ↔ 𝑁 ∈ (β„€β‰₯β€˜0))
4543, 44sylib 217 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„• β†’ 𝑁 ∈ (β„€β‰₯β€˜0))
46 eluzfz 13496 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (β„€β‰₯β€˜0) ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ∈ (0...𝑀))
4745, 46sylan 581 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ∈ (0...𝑀))
48 fzelp1 13553 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (0...𝑀) β†’ 𝑁 ∈ (0...(𝑀 + 1)))
4947, 48syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ∈ (0...(𝑀 + 1)))
5049adantl 483 . . . . . . . . . . . . . . . 16 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ (0...(𝑀 + 1)))
51 oveq2 7417 . . . . . . . . . . . . . . . . . 18 ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ (0...(β™―β€˜π‘Š)) = (0...(𝑀 + 1)))
5251eleq2d 2820 . . . . . . . . . . . . . . . . 17 ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ (𝑁 ∈ (0...(β™―β€˜π‘Š)) ↔ 𝑁 ∈ (0...(𝑀 + 1))))
5352ad2antlr 726 . . . . . . . . . . . . . . . 16 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (𝑁 ∈ (0...(β™―β€˜π‘Š)) ↔ 𝑁 ∈ (0...(𝑀 + 1))))
5450, 53mpbird 257 . . . . . . . . . . . . . . 15 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ (0...(β™―β€˜π‘Š)))
55 pfxlen 14633 . . . . . . . . . . . . . . 15 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(π‘Š prefix 𝑁)) = 𝑁)
567, 54, 55syl2anc 585 . . . . . . . . . . . . . 14 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (β™―β€˜(π‘Š prefix 𝑁)) = 𝑁)
5756oveq1d 7424 . . . . . . . . . . . . 13 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ ((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1) = (𝑁 βˆ’ 1))
5857oveq2d 7425 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)) = (0..^(𝑁 βˆ’ 1)))
5958raleqdv 3326 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
607adantr 482 . . . . . . . . . . . . . . 15 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ π‘Š ∈ Word (Vtxβ€˜πΊ))
6154adantr 482 . . . . . . . . . . . . . . 15 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ 𝑁 ∈ (0...(β™―β€˜π‘Š)))
6230ad2antrl 727 . . . . . . . . . . . . . . . . 17 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)))
63 fzoss2 13660 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (β„€β‰₯β€˜(𝑁 βˆ’ 1)) β†’ (0..^(𝑁 βˆ’ 1)) βŠ† (0..^𝑁))
6462, 63syl 17 . . . . . . . . . . . . . . . 16 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (0..^(𝑁 βˆ’ 1)) βŠ† (0..^𝑁))
6564sselda 3983 . . . . . . . . . . . . . . 15 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ 𝑖 ∈ (0..^𝑁))
66 pfxfv 14632 . . . . . . . . . . . . . . 15 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (0...(β™―β€˜π‘Š)) ∧ 𝑖 ∈ (0..^𝑁)) β†’ ((π‘Š prefix 𝑁)β€˜π‘–) = (π‘Šβ€˜π‘–))
6760, 61, 65, 66syl3anc 1372 . . . . . . . . . . . . . 14 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ ((π‘Š prefix 𝑁)β€˜π‘–) = (π‘Šβ€˜π‘–))
6827ad2antrl 727 . . . . . . . . . . . . . . . 16 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ β„€)
69 elfzom1elp1fzo 13699 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„€ ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ (𝑖 + 1) ∈ (0..^𝑁))
7068, 69sylan 581 . . . . . . . . . . . . . . 15 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ (𝑖 + 1) ∈ (0..^𝑁))
71 pfxfv 14632 . . . . . . . . . . . . . . 15 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝑖 + 1) ∈ (0..^𝑁)) β†’ ((π‘Š prefix 𝑁)β€˜(𝑖 + 1)) = (π‘Šβ€˜(𝑖 + 1)))
7260, 61, 70, 71syl3anc 1372 . . . . . . . . . . . . . 14 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ ((π‘Š prefix 𝑁)β€˜(𝑖 + 1)) = (π‘Šβ€˜(𝑖 + 1)))
7367, 72preq12d 4746 . . . . . . . . . . . . 13 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ {((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} = {(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))})
7473eleq1d 2819 . . . . . . . . . . . 12 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 ∈ (0..^(𝑁 βˆ’ 1))) β†’ ({((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
7574ralbidva 3176 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
7659, 75bitrd 279 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
77763adantl3 1169 . . . . . . . . 9 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
7877adantr 482 . . . . . . . 8 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^(𝑁 βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
7942, 78mpbird 257 . . . . . . 7 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
80 elfz1uz 13571 . . . . . . . . . . . . . 14 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ∈ (1...𝑀))
81 fzelp1 13553 . . . . . . . . . . . . . 14 (𝑁 ∈ (1...𝑀) β†’ 𝑁 ∈ (1...(𝑀 + 1)))
8280, 81syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ∈ (1...(𝑀 + 1)))
8382adantl 483 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ (1...(𝑀 + 1)))
84 oveq2 7417 . . . . . . . . . . . . . 14 ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ (1...(β™―β€˜π‘Š)) = (1...(𝑀 + 1)))
8584eleq2d 2820 . . . . . . . . . . . . 13 ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ (𝑁 ∈ (1...(β™―β€˜π‘Š)) ↔ 𝑁 ∈ (1...(𝑀 + 1))))
8685ad2antlr 726 . . . . . . . . . . . 12 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (𝑁 ∈ (1...(β™―β€˜π‘Š)) ↔ 𝑁 ∈ (1...(𝑀 + 1))))
8783, 86mpbird 257 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ (1...(β™―β€˜π‘Š)))
88 pfxfvlsw 14645 . . . . . . . . . . . 12 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘Š))) β†’ (lastSβ€˜(π‘Š prefix 𝑁)) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
89 pfxfv0 14642 . . . . . . . . . . . 12 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝑁)β€˜0) = (π‘Šβ€˜0))
9088, 89preq12d 4746 . . . . . . . . . . 11 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘Š))) β†’ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)})
917, 87, 90syl2anc 585 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)})
92913adantl3 1169 . . . . . . . . 9 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)})
9392adantr 482 . . . . . . . 8 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)})
94 fz1fzo0m1 13680 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (1...𝑀) β†’ (𝑁 βˆ’ 1) ∈ (0..^𝑀))
9580, 94syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ (𝑁 βˆ’ 1) ∈ (0..^𝑀))
96953ad2ant3 1136 . . . . . . . . . . . . . 14 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (𝑁 βˆ’ 1) ∈ (0..^𝑀))
97 simpr 486 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ β„• ∧ 𝑖 = (𝑁 βˆ’ 1)) β†’ 𝑖 = (𝑁 βˆ’ 1))
9897fveq2d 6896 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ β„• ∧ 𝑖 = (𝑁 βˆ’ 1)) β†’ (π‘Šβ€˜π‘–) = (π‘Šβ€˜(𝑁 βˆ’ 1)))
99 oveq1 7416 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑁 βˆ’ 1) β†’ (𝑖 + 1) = ((𝑁 βˆ’ 1) + 1))
100 nncn 12220 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„‚)
101 npcan1 11639 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ β„‚ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ β„• β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
10399, 102sylan9eqr 2795 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ β„• ∧ 𝑖 = (𝑁 βˆ’ 1)) β†’ (𝑖 + 1) = 𝑁)
104103fveq2d 6896 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ β„• ∧ 𝑖 = (𝑁 βˆ’ 1)) β†’ (π‘Šβ€˜(𝑖 + 1)) = (π‘Šβ€˜π‘))
10598, 104preq12d 4746 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ β„• ∧ 𝑖 = (𝑁 βˆ’ 1)) β†’ {(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)})
106105eleq1d 2819 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ β„• ∧ 𝑖 = (𝑁 βˆ’ 1)) β†’ ({(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ)))
107106ex 414 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ β„• β†’ (𝑖 = (𝑁 βˆ’ 1) β†’ ({(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ))))
108107adantr 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ (𝑖 = (𝑁 βˆ’ 1) β†’ ({(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ))))
1091083ad2ant3 1136 . . . . . . . . . . . . . . 15 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (𝑖 = (𝑁 βˆ’ 1) β†’ ({(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ))))
110109imp 408 . . . . . . . . . . . . . 14 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ 𝑖 = (𝑁 βˆ’ 1)) β†’ ({(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ)))
11196, 110rspcdv 3605 . . . . . . . . . . . . 13 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ)))
1121113exp 1120 . . . . . . . . . . . 12 (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ (βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ)))))
113112com34 91 . . . . . . . . . . 11 (π‘Š ∈ Word (Vtxβ€˜πΊ) β†’ ((β™―β€˜π‘Š) = (𝑀 + 1) β†’ (βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) β†’ ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ)))))
1141133imp1 1348 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ))
115114adantr 482 . . . . . . . . 9 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ))
116 preq2 4739 . . . . . . . . . . 11 ((π‘Šβ€˜π‘) = (π‘Šβ€˜0) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} = {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)})
117116eleq1d 2819 . . . . . . . . . 10 ((π‘Šβ€˜π‘) = (π‘Šβ€˜0) β†’ ({(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
118117adantl 483 . . . . . . . . 9 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ ({(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜π‘)} ∈ (Edgβ€˜πΊ) ↔ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ)))
119115, 118mpbid 231 . . . . . . . 8 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ {(π‘Šβ€˜(𝑁 βˆ’ 1)), (π‘Šβ€˜0)} ∈ (Edgβ€˜πΊ))
12093, 119eqeltrd 2834 . . . . . . 7 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} ∈ (Edgβ€˜πΊ))
12126, 79, 1203jca 1129 . . . . . 6 ((((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (((π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ) ∧ (π‘Š prefix 𝑁) β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} ∈ (Edgβ€˜πΊ)))
122121exp31 421 . . . . 5 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ ((π‘Šβ€˜π‘) = (π‘Šβ€˜0) β†’ (((π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ) ∧ (π‘Š prefix 𝑁) β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} ∈ (Edgβ€˜πΊ)))))
1231223imp21 1115 . . . 4 (((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) ∧ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (((π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ) ∧ (π‘Š prefix 𝑁) β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} ∈ (Edgβ€˜πΊ)))
1241, 2isclwwlk 29237 . . . 4 ((π‘Š prefix 𝑁) ∈ (ClWWalksβ€˜πΊ) ↔ (((π‘Š prefix 𝑁) ∈ Word (Vtxβ€˜πΊ) ∧ (π‘Š prefix 𝑁) β‰  βˆ…) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜(π‘Š prefix 𝑁)) βˆ’ 1)){((π‘Š prefix 𝑁)β€˜π‘–), ((π‘Š prefix 𝑁)β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ∧ {(lastSβ€˜(π‘Š prefix 𝑁)), ((π‘Š prefix 𝑁)β€˜0)} ∈ (Edgβ€˜πΊ)))
125123, 124sylibr 233 . . 3 (((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) ∧ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (π‘Š prefix 𝑁) ∈ (ClWWalksβ€˜πΊ))
12647adantl 483 . . . . . . . . . . 11 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ (0...𝑀))
127126, 48syl 17 . . . . . . . . . 10 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ (0...(𝑀 + 1)))
128127, 53mpbird 257 . . . . . . . . 9 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ 𝑁 ∈ (0...(β™―β€˜π‘Š)))
1297, 128jca 513 . . . . . . . 8 (((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) ∧ (𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘))) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (0...(β™―β€˜π‘Š))))
130129ex 414 . . . . . . 7 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1)) β†’ ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (0...(β™―β€˜π‘Š)))))
1311303adant3 1133 . . . . . 6 ((π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ ((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (0...(β™―β€˜π‘Š)))))
132131impcom 409 . . . . 5 (((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) ∧ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (0...(β™―β€˜π‘Š))))
1331323adant3 1133 . . . 4 (((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) ∧ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (0...(β™―β€˜π‘Š))))
134133, 55syl 17 . . 3 (((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) ∧ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (β™―β€˜(π‘Š prefix 𝑁)) = 𝑁)
135 isclwwlkn 29280 . . 3 ((π‘Š prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((π‘Š prefix 𝑁) ∈ (ClWWalksβ€˜πΊ) ∧ (β™―β€˜(π‘Š prefix 𝑁)) = 𝑁))
136125, 134, 135sylanbrc 584 . 2 (((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) ∧ (π‘Š ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘Š) = (𝑀 + 1) ∧ βˆ€π‘– ∈ (0..^𝑀){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (π‘Š prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺))
1373, 136syl3an2 1165 1 (((𝑁 ∈ β„• ∧ 𝑀 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘Š ∈ (𝑀 WWalksN 𝐺) ∧ (π‘Šβ€˜π‘) = (π‘Šβ€˜0)) β†’ (π‘Š prefix 𝑁) ∈ (𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062   βŠ† wss 3949  βˆ…c0 4323  {cpr 4631   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108  β„cr 11109  0cc0 11110  1c1 11111   + caddc 11113   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  β„•0cn0 12472  β„€cz 12558  β„€β‰₯cuz 12822  ...cfz 13484  ..^cfzo 13627  β™―chash 14290  Word cword 14464  lastSclsw 14512   prefix cpfx 14620  Vtxcvtx 28256  Edgcedg 28307   WWalksN cwwlksn 29080  ClWWalkscclwwlk 29234   ClWWalksN cclwwlkn 29277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-lsw 14513  df-substr 14591  df-pfx 14621  df-wwlks 29084  df-wwlksn 29085  df-clwwlk 29235  df-clwwlkn 29278
This theorem is referenced by:  clwwnrepclwwn  29597
  Copyright terms: Public domain W3C validator