Step | Hyp | Ref
| Expression |
1 | | wwlknbp1 28831 |
. . 3
β’ (π β (π WWalksN πΊ) β (π β β0 β§ π β Word (VtxβπΊ) β§ (β―βπ) = (π + 1))) |
2 | | simpl2 1193 |
. . . . . 6
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ (π β (VtxβπΊ) β§ (lastSβπ) β (πβ0))) β π β Word (VtxβπΊ)) |
3 | | s1cl 14497 |
. . . . . . 7
β’ (π β (VtxβπΊ) β β¨βπββ© β Word
(VtxβπΊ)) |
4 | 3 | ad2antrl 727 |
. . . . . 6
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ (π β (VtxβπΊ) β§ (lastSβπ) β (πβ0))) β β¨βπββ© β Word
(VtxβπΊ)) |
5 | | nn0p1gt0 12449 |
. . . . . . . . 9
β’ (π β β0
β 0 < (π +
1)) |
6 | 5 | 3ad2ant1 1134 |
. . . . . . . 8
β’ ((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β 0 < (π + 1)) |
7 | 6 | adantr 482 |
. . . . . . 7
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ (π β (VtxβπΊ) β§ (lastSβπ) β (πβ0))) β 0 < (π + 1)) |
8 | | breq2 5114 |
. . . . . . . . 9
β’
((β―βπ) =
(π + 1) β (0 <
(β―βπ) β 0
< (π +
1))) |
9 | 8 | 3ad2ant3 1136 |
. . . . . . . 8
β’ ((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β (0 <
(β―βπ) β 0
< (π +
1))) |
10 | 9 | adantr 482 |
. . . . . . 7
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ (π β (VtxβπΊ) β§ (lastSβπ) β (πβ0))) β (0 <
(β―βπ) β 0
< (π +
1))) |
11 | 7, 10 | mpbird 257 |
. . . . . 6
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ (π β (VtxβπΊ) β§ (lastSβπ) β (πβ0))) β 0 <
(β―βπ)) |
12 | | ccatfv0 14478 |
. . . . . 6
β’ ((π β Word (VtxβπΊ) β§ β¨βπββ© β Word
(VtxβπΊ) β§ 0 <
(β―βπ)) β
((π ++ β¨βπββ©)β0) = (πβ0)) |
13 | 2, 4, 11, 12 | syl3anc 1372 |
. . . . 5
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ (π β (VtxβπΊ) β§ (lastSβπ) β (πβ0))) β ((π ++ β¨βπββ©)β0) = (πβ0)) |
14 | | oveq1 7369 |
. . . . . . . . . . . . 13
β’
((β―βπ) =
(π + 1) β
((β―βπ) β
1) = ((π + 1) β
1)) |
15 | 14 | 3ad2ant3 1136 |
. . . . . . . . . . . 12
β’ ((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β
((β―βπ) β
1) = ((π + 1) β
1)) |
16 | | nn0cn 12430 |
. . . . . . . . . . . . . 14
β’ (π β β0
β π β
β) |
17 | | pncan1 11586 |
. . . . . . . . . . . . . 14
β’ (π β β β ((π + 1) β 1) = π) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β β0
β ((π + 1) β 1)
= π) |
19 | 18 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
β’ ((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β ((π + 1) β 1) = π) |
20 | 15, 19 | eqtr2d 2778 |
. . . . . . . . . . 11
β’ ((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β π = ((β―βπ) β 1)) |
21 | 20 | adantr 482 |
. . . . . . . . . 10
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β π = ((β―βπ) β 1)) |
22 | 21 | fveq2d 6851 |
. . . . . . . . 9
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β ((π ++ β¨βπββ©)βπ) = ((π ++ β¨βπββ©)β((β―βπ) β 1))) |
23 | | simpl2 1193 |
. . . . . . . . . 10
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β π β Word (VtxβπΊ)) |
24 | 3 | adantl 483 |
. . . . . . . . . 10
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β β¨βπββ© β Word (VtxβπΊ)) |
25 | 6 | adantr 482 |
. . . . . . . . . . . 12
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β 0 < (π + 1)) |
26 | 9 | adantr 482 |
. . . . . . . . . . . 12
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β (0 < (β―βπ) β 0 < (π + 1))) |
27 | 25, 26 | mpbird 257 |
. . . . . . . . . . 11
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β 0 < (β―βπ)) |
28 | | hashneq0 14271 |
. . . . . . . . . . . . . 14
β’ (π β Word (VtxβπΊ) β (0 <
(β―βπ) β
π β
β
)) |
29 | 28 | bicomd 222 |
. . . . . . . . . . . . 13
β’ (π β Word (VtxβπΊ) β (π β β
β 0 <
(β―βπ))) |
30 | 29 | 3ad2ant2 1135 |
. . . . . . . . . . . 12
β’ ((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β (π β β
β 0 <
(β―βπ))) |
31 | 30 | adantr 482 |
. . . . . . . . . . 11
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β (π β β
β 0 <
(β―βπ))) |
32 | 27, 31 | mpbird 257 |
. . . . . . . . . 10
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β π β β
) |
33 | | ccatval1lsw 14479 |
. . . . . . . . . 10
β’ ((π β Word (VtxβπΊ) β§ β¨βπββ© β Word
(VtxβπΊ) β§ π β β
) β ((π ++ β¨βπββ©)β((β―βπ) β 1)) =
(lastSβπ)) |
34 | 23, 24, 32, 33 | syl3anc 1372 |
. . . . . . . . 9
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β ((π ++ β¨βπββ©)β((β―βπ) β 1)) =
(lastSβπ)) |
35 | 22, 34 | eqtr2d 2778 |
. . . . . . . 8
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β (lastSβπ) = ((π ++ β¨βπββ©)βπ)) |
36 | 35 | neeq1d 3004 |
. . . . . . 7
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β ((lastSβπ) β (πβ0) β ((π ++ β¨βπββ©)βπ) β (πβ0))) |
37 | 36 | biimpd 228 |
. . . . . 6
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ π β (VtxβπΊ)) β ((lastSβπ) β (πβ0) β ((π ++ β¨βπββ©)βπ) β (πβ0))) |
38 | 37 | impr 456 |
. . . . 5
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ (π β (VtxβπΊ) β§ (lastSβπ) β (πβ0))) β ((π ++ β¨βπββ©)βπ) β (πβ0)) |
39 | 13, 38 | jca 513 |
. . . 4
β’ (((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β§ (π β (VtxβπΊ) β§ (lastSβπ) β (πβ0))) β (((π ++ β¨βπββ©)β0) = (πβ0) β§ ((π ++ β¨βπββ©)βπ) β (πβ0))) |
40 | 39 | exp32 422 |
. . 3
β’ ((π β β0
β§ π β Word
(VtxβπΊ) β§
(β―βπ) = (π + 1)) β (π β (VtxβπΊ) β ((lastSβπ) β (πβ0) β (((π ++ β¨βπββ©)β0) = (πβ0) β§ ((π ++ β¨βπββ©)βπ) β (πβ0))))) |
41 | 1, 40 | syl 17 |
. 2
β’ (π β (π WWalksN πΊ) β (π β (VtxβπΊ) β ((lastSβπ) β (πβ0) β (((π ++ β¨βπββ©)β0) = (πβ0) β§ ((π ++ β¨βπββ©)βπ) β (πβ0))))) |
42 | 41 | 3imp21 1115 |
1
β’ ((π β (VtxβπΊ) β§ π β (π WWalksN πΊ) β§ (lastSβπ) β (πβ0)) β (((π ++ β¨βπββ©)β0) = (πβ0) β§ ((π ++ β¨βπββ©)βπ) β (πβ0))) |