MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1lem Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1lem 30244
Description: Lemma for numclwwlk2lem1 30278. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-May-2021.) (Revised by AV, 15-Mar-2022.)
Assertion
Ref Expression
numclwwlk2lem1lem ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))

Proof of Theorem numclwwlk2lem1lem
StepHypRef Expression
1 wwlknbp1 29747 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 simpl2 1193 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 𝑊 ∈ Word (Vtx‘𝐺))
3 s1cl 14543 . . . . . . 7 (𝑋 ∈ (Vtx‘𝐺) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
43ad2antrl 728 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
5 nn0p1gt0 12447 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
653ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (𝑁 + 1))
76adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (𝑁 + 1))
8 breq2 5106 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
983ad2ant3 1135 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
109adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
117, 10mpbird 257 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (♯‘𝑊))
12 ccatfv0 14524 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
132, 4, 11, 12syl3anc 1373 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
14 oveq1 7376 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
15143ad2ant3 1135 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
16 nn0cn 12428 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 11578 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
19183ad2ant1 1133 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁)
2015, 19eqtr2d 2765 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 = ((♯‘𝑊) − 1))
2120adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑁 = ((♯‘𝑊) − 1))
2221fveq2d 6844 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)))
23 simpl2 1193 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺))
243adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
256adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (𝑁 + 1))
269adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
2725, 26mpbird 257 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (♯‘𝑊))
28 hashneq0 14305 . . . . . . . . . . . . . 14 (𝑊 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
2928bicomd 223 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
30293ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
3130adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
3227, 31mpbird 257 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ≠ ∅)
33 ccatval1lsw 14525 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
3423, 24, 32, 33syl3anc 1373 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
3522, 34eqtr2d 2765 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (lastS‘𝑊) = ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁))
3635neeq1d 2984 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) ↔ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
3736biimpd 229 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
3837impr 454 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0))
3913, 38jca 511 . . . 4 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
4039exp32 420 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))))
411, 40syl 17 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))))
42413imp21 1113 1 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  0cn0 12418  chash 14271  Word cword 14454  lastSclsw 14503   ++ cconcat 14511  ⟨“cs1 14536  Vtxcvtx 28899   WWalksN cwwlksn 29729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-wwlks 29733  df-wwlksn 29734
This theorem is referenced by:  numclwwlk2lem1  30278
  Copyright terms: Public domain W3C validator