Proof of Theorem numclwwlk2lem1lem
Step | Hyp | Ref
| Expression |
1 | | wwlknbp1 28110 |
. . 3
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) |
2 | | simpl2 1190 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 𝑊 ∈ Word (Vtx‘𝐺)) |
3 | | s1cl 14235 |
. . . . . . 7
⊢ (𝑋 ∈ (Vtx‘𝐺) → 〈“𝑋”〉 ∈ Word
(Vtx‘𝐺)) |
4 | 3 | ad2antrl 724 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 〈“𝑋”〉 ∈ Word
(Vtx‘𝐺)) |
5 | | nn0p1gt0 12192 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 0 < (𝑁 +
1)) |
6 | 5 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → 0 < (𝑁 + 1)) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (𝑁 + 1)) |
8 | | breq2 5074 |
. . . . . . . . 9
⊢
((♯‘𝑊) =
(𝑁 + 1) → (0 <
(♯‘𝑊) ↔ 0
< (𝑁 +
1))) |
9 | 8 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → (0 <
(♯‘𝑊) ↔ 0
< (𝑁 +
1))) |
10 | 9 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (0 <
(♯‘𝑊) ↔ 0
< (𝑁 +
1))) |
11 | 7, 10 | mpbird 256 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 <
(♯‘𝑊)) |
12 | | ccatfv0 14216 |
. . . . . 6
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 〈“𝑋”〉 ∈ Word
(Vtx‘𝐺) ∧ 0 <
(♯‘𝑊)) →
((𝑊 ++ 〈“𝑋”〉)‘0) = (𝑊‘0)) |
13 | 2, 4, 11, 12 | syl3anc 1369 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ 〈“𝑋”〉)‘0) = (𝑊‘0)) |
14 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑊) =
(𝑁 + 1) →
((♯‘𝑊) −
1) = ((𝑁 + 1) −
1)) |
15 | 14 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) →
((♯‘𝑊) −
1) = ((𝑁 + 1) −
1)) |
16 | | nn0cn 12173 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
17 | | pncan1 11329 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
19 | 18 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁) |
20 | 15, 19 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → 𝑁 = ((♯‘𝑊) − 1)) |
21 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑁 = ((♯‘𝑊) − 1)) |
22 | 21 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ 〈“𝑋”〉)‘𝑁) = ((𝑊 ++ 〈“𝑋”〉)‘((♯‘𝑊) − 1))) |
23 | | simpl2 1190 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺)) |
24 | 3 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 〈“𝑋”〉 ∈ Word (Vtx‘𝐺)) |
25 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (𝑁 + 1)) |
26 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1))) |
27 | 25, 26 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (♯‘𝑊)) |
28 | | hashneq0 14007 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (0 <
(♯‘𝑊) ↔
𝑊 ≠
∅)) |
29 | 28 | bicomd 222 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ 0 <
(♯‘𝑊))) |
30 | 29 | 3ad2ant2 1132 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → (𝑊 ≠ ∅ ↔ 0 <
(♯‘𝑊))) |
31 | 30 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (𝑊 ≠ ∅ ↔ 0 <
(♯‘𝑊))) |
32 | 27, 31 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ≠ ∅) |
33 | | ccatval1lsw 14217 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 〈“𝑋”〉 ∈ Word
(Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 ++ 〈“𝑋”〉)‘((♯‘𝑊) − 1)) =
(lastS‘𝑊)) |
34 | 23, 24, 32, 33 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ 〈“𝑋”〉)‘((♯‘𝑊) − 1)) =
(lastS‘𝑊)) |
35 | 22, 34 | eqtr2d 2779 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (lastS‘𝑊) = ((𝑊 ++ 〈“𝑋”〉)‘𝑁)) |
36 | 35 | neeq1d 3002 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) ↔ ((𝑊 ++ 〈“𝑋”〉)‘𝑁) ≠ (𝑊‘0))) |
37 | 36 | biimpd 228 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) → ((𝑊 ++ 〈“𝑋”〉)‘𝑁) ≠ (𝑊‘0))) |
38 | 37 | impr 454 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ 〈“𝑋”〉)‘𝑁) ≠ (𝑊‘0)) |
39 | 13, 38 | jca 511 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (((𝑊 ++ 〈“𝑋”〉)‘0) = (𝑊‘0) ∧ ((𝑊 ++ 〈“𝑋”〉)‘𝑁) ≠ (𝑊‘0))) |
40 | 39 | exp32 420 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ 〈“𝑋”〉)‘0) = (𝑊‘0) ∧ ((𝑊 ++ 〈“𝑋”〉)‘𝑁) ≠ (𝑊‘0))))) |
41 | 1, 40 | syl 17 |
. 2
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ 〈“𝑋”〉)‘0) = (𝑊‘0) ∧ ((𝑊 ++ 〈“𝑋”〉)‘𝑁) ≠ (𝑊‘0))))) |
42 | 41 | 3imp21 1112 |
1
⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ 〈“𝑋”〉)‘0) = (𝑊‘0) ∧ ((𝑊 ++ 〈“𝑋”〉)‘𝑁) ≠ (𝑊‘0))) |