MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1lem Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1lem 30314
Description: Lemma for numclwwlk2lem1 30348. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-May-2021.) (Revised by AV, 15-Mar-2022.)
Assertion
Ref Expression
numclwwlk2lem1lem ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))

Proof of Theorem numclwwlk2lem1lem
StepHypRef Expression
1 wwlknbp1 29817 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 simpl2 1193 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 𝑊 ∈ Word (Vtx‘𝐺))
3 s1cl 14505 . . . . . . 7 (𝑋 ∈ (Vtx‘𝐺) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
43ad2antrl 728 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
5 nn0p1gt0 12405 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
653ad2ant1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (𝑁 + 1))
76adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (𝑁 + 1))
8 breq2 5090 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
983ad2ant3 1135 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
109adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
117, 10mpbird 257 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (♯‘𝑊))
12 ccatfv0 14486 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
132, 4, 11, 12syl3anc 1373 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
14 oveq1 7348 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
15143ad2ant3 1135 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
16 nn0cn 12386 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 11536 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
19183ad2ant1 1133 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁)
2015, 19eqtr2d 2767 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 = ((♯‘𝑊) − 1))
2120adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑁 = ((♯‘𝑊) − 1))
2221fveq2d 6821 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)))
23 simpl2 1193 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺))
243adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
256adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (𝑁 + 1))
269adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
2725, 26mpbird 257 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (♯‘𝑊))
28 hashneq0 14266 . . . . . . . . . . . . . 14 (𝑊 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
2928bicomd 223 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
30293ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
3130adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
3227, 31mpbird 257 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ≠ ∅)
33 ccatval1lsw 14487 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
3423, 24, 32, 33syl3anc 1373 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
3522, 34eqtr2d 2767 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (lastS‘𝑊) = ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁))
3635neeq1d 2987 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) ↔ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
3736biimpd 229 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
3837impr 454 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0))
3913, 38jca 511 . . . 4 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
4039exp32 420 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))))
411, 40syl 17 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))))
42413imp21 1113 1 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  c0 4278   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   + caddc 11004   < clt 11141  cmin 11339  0cn0 12376  chash 14232  Word cword 14415  lastSclsw 14464   ++ cconcat 14472  ⟨“cs1 14498  Vtxcvtx 28969   WWalksN cwwlksn 29799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-lsw 14465  df-concat 14473  df-s1 14499  df-wwlks 29803  df-wwlksn 29804
This theorem is referenced by:  numclwwlk2lem1  30348
  Copyright terms: Public domain W3C validator