MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk2lem1lem Structured version   Visualization version   GIF version

Theorem numclwwlk2lem1lem 30361
Description: Lemma for numclwwlk2lem1 30395. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-May-2021.) (Revised by AV, 15-Mar-2022.)
Assertion
Ref Expression
numclwwlk2lem1lem ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))

Proof of Theorem numclwwlk2lem1lem
StepHypRef Expression
1 wwlknbp1 29864 . . 3 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
2 simpl2 1193 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 𝑊 ∈ Word (Vtx‘𝐺))
3 s1cl 14640 . . . . . . 7 (𝑋 ∈ (Vtx‘𝐺) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
43ad2antrl 728 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
5 nn0p1gt0 12555 . . . . . . . . 9 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
653ad2ant1 1134 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 0 < (𝑁 + 1))
76adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (𝑁 + 1))
8 breq2 5147 . . . . . . . . 9 ((♯‘𝑊) = (𝑁 + 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
983ad2ant3 1136 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
109adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
117, 10mpbird 257 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → 0 < (♯‘𝑊))
12 ccatfv0 14621 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
132, 4, 11, 12syl3anc 1373 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0))
14 oveq1 7438 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
15143ad2ant3 1136 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
16 nn0cn 12536 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 11687 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
19183ad2ant1 1134 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁)
2015, 19eqtr2d 2778 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → 𝑁 = ((♯‘𝑊) − 1))
2120adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑁 = ((♯‘𝑊) − 1))
2221fveq2d 6910 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) = ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)))
23 simpl2 1193 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ∈ Word (Vtx‘𝐺))
243adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺))
256adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (𝑁 + 1))
269adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 + 1)))
2725, 26mpbird 257 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 0 < (♯‘𝑊))
28 hashneq0 14403 . . . . . . . . . . . . . 14 (𝑊 ∈ Word (Vtx‘𝐺) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
2928bicomd 223 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
30293ad2ant2 1135 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
3130adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (𝑊 ≠ ∅ ↔ 0 < (♯‘𝑊)))
3227, 31mpbird 257 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → 𝑊 ≠ ∅)
33 ccatval1lsw 14622 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ⟨“𝑋”⟩ ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
3423, 24, 32, 33syl3anc 1373 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((𝑊 ++ ⟨“𝑋”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
3522, 34eqtr2d 2778 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → (lastS‘𝑊) = ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁))
3635neeq1d 3000 . . . . . . 7 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) ↔ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
3736biimpd 229 . . . . . 6 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ 𝑋 ∈ (Vtx‘𝐺)) → ((lastS‘𝑊) ≠ (𝑊‘0) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
3837impr 454 . . . . 5 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0))
3913, 38jca 511 . . . 4 (((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0))) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
4039exp32 420 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))))
411, 40syl 17 . 2 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑋 ∈ (Vtx‘𝐺) → ((lastS‘𝑊) ≠ (𝑊‘0) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))))
42413imp21 1114 1 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑊) ≠ (𝑊‘0)) → (((𝑊 ++ ⟨“𝑋”⟩)‘0) = (𝑊‘0) ∧ ((𝑊 ++ ⟨“𝑋”⟩)‘𝑁) ≠ (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  0cn0 12526  chash 14369  Word cword 14552  lastSclsw 14600   ++ cconcat 14608  ⟨“cs1 14633  Vtxcvtx 29013   WWalksN cwwlksn 29846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-wwlks 29850  df-wwlksn 29851
This theorem is referenced by:  numclwwlk2lem1  30395
  Copyright terms: Public domain W3C validator