MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdco Structured version   Visualization version   GIF version

Theorem swrdco 14478
Description: Mapping of words commutes with the substring operation. (Contributed by AV, 11-Nov-2018.)
Assertion
Ref Expression
swrdco ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) = ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩))

Proof of Theorem swrdco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6584 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1133 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 swrdvalfn 14292 . . . . 5 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
433expb 1118 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
543adant3 1130 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
6 swrdrn 14293 . . . . 5 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
763expb 1118 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
873adant3 1130 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
9 fnco 6533 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)) ∧ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) Fn (0..^(𝑁𝑀)))
102, 5, 8, 9syl3anc 1369 . 2 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) Fn (0..^(𝑁𝑀)))
11 wrdco 14472 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
12113adant2 1129 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
13 simp2l 1197 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑀 ∈ (0...𝑁))
14 lenco 14473 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1514eqcomd 2744 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
1615oveq2d 7271 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0...(♯‘𝑊)) = (0...(♯‘(𝐹𝑊))))
1716eleq2d 2824 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑁 ∈ (0...(♯‘𝑊)) ↔ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
1817biimpd 228 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
1918expcom 413 . . . . . 6 (𝐹:𝐴𝐵 → (𝑊 ∈ Word 𝐴 → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
2019com13 88 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
2120adantl 481 . . . 4 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
22213imp21 1112 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))
23 swrdvalfn 14292 . . 3 (((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))) → ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
2412, 13, 22, 23syl3anc 1369 . 2 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
25 3anass 1093 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ↔ (𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))))
2625biimpri 227 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
27263adant3 1130 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
28 swrdfv 14289 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
2928fveq2d 6760 . . . . 5 (((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3027, 29sylan 579 . . . 4 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
31 wrdfn 14159 . . . . . 6 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
32313ad2ant1 1131 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(♯‘𝑊)))
33 elfzodifsumelfzo 13381 . . . . . . 7 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑖 ∈ (0..^(𝑁𝑀)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))))
34333ad2ant2 1132 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(𝑁𝑀)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))))
3534imp 406 . . . . 5 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊)))
36 fvco2 6847 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(𝑖 + 𝑀)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3732, 35, 36syl2an2r 681 . . . 4 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹𝑊)‘(𝑖 + 𝑀)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3830, 37eqtr4d 2781 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
39 fvco2 6847 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)))
405, 39sylan 579 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)))
4114ancoms 458 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
4241eqcomd 2744 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
4342oveq2d 7271 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (0...(♯‘𝑊)) = (0...(♯‘(𝐹𝑊))))
4443eleq2d 2824 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (𝑁 ∈ (0...(♯‘𝑊)) ↔ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
4544biimpd 228 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
4645ex 412 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑊 ∈ Word 𝐴 → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
4746com13 88 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
4847adantl 481 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
49483imp21 1112 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))
5012, 13, 493jca 1126 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
51 swrdfv 14289 . . . 4 ((((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
5250, 51sylan 579 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
5338, 40, 523eqtr4d 2788 . 2 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖))
5410, 24, 53eqfnfvd 6894 1 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) = ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  cop 4564  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802   + caddc 10805  cmin 11135  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   substr csubstr 14281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-substr 14282
This theorem is referenced by:  pfxco  14479
  Copyright terms: Public domain W3C validator