MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdco Structured version   Visualization version   GIF version

Theorem swrdco 14741
Description: Mapping of words commutes with the substring operation. (Contributed by AV, 11-Nov-2018.)
Assertion
Ref Expression
swrdco ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) = ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩))

Proof of Theorem swrdco
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ffn 6651 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
213ad2ant3 1135 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
3 swrdvalfn 14556 . . . . 5 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
433expb 1120 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
543adant3 1132 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
6 swrdrn 14557 . . . . 5 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
763expb 1120 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
873adant3 1132 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴)
9 fnco 6599 . . 3 ((𝐹 Fn 𝐴 ∧ (𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)) ∧ ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝐴) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) Fn (0..^(𝑁𝑀)))
102, 5, 8, 9syl3anc 1373 . 2 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) Fn (0..^(𝑁𝑀)))
11 wrdco 14735 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
12113adant2 1131 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹𝑊) ∈ Word 𝐵)
13 simp2l 1200 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑀 ∈ (0...𝑁))
14 lenco 14736 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1514eqcomd 2737 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
1615oveq2d 7362 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0...(♯‘𝑊)) = (0...(♯‘(𝐹𝑊))))
1716eleq2d 2817 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑁 ∈ (0...(♯‘𝑊)) ↔ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
1817biimpd 229 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
1918expcom 413 . . . . . 6 (𝐹:𝐴𝐵 → (𝑊 ∈ Word 𝐴 → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
2019com13 88 . . . . 5 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
2120adantl 481 . . . 4 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
22213imp21 1113 . . 3 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))
23 swrdvalfn 14556 . . 3 (((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))) → ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
2412, 13, 22, 23syl3anc 1373 . 2 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)))
25 3anass 1094 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ↔ (𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))))
2625biimpri 228 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊)))) → (𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
27263adant3 1132 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
28 swrdfv 14553 . . . . . 6 (((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖) = (𝑊‘(𝑖 + 𝑀)))
2928fveq2d 6826 . . . . 5 (((𝑊 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3027, 29sylan 580 . . . 4 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
31 wrdfn 14432 . . . . . 6 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
32313ad2ant1 1133 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑊 Fn (0..^(♯‘𝑊)))
33 elfzodifsumelfzo 13628 . . . . . . 7 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑖 ∈ (0..^(𝑁𝑀)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))))
34333ad2ant2 1134 . . . . . 6 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝑖 ∈ (0..^(𝑁𝑀)) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))))
3534imp 406 . . . . 5 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊)))
36 fvco2 6919 . . . . 5 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (𝑖 + 𝑀) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(𝑖 + 𝑀)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3732, 35, 36syl2an2r 685 . . . 4 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹𝑊)‘(𝑖 + 𝑀)) = (𝐹‘(𝑊‘(𝑖 + 𝑀))))
3830, 37eqtr4d 2769 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
39 fvco2 6919 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) Fn (0..^(𝑁𝑀)) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)))
405, 39sylan 580 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (𝐹‘((𝑊 substr ⟨𝑀, 𝑁⟩)‘𝑖)))
4114ancoms 458 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
4241eqcomd 2737 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (♯‘𝑊) = (♯‘(𝐹𝑊)))
4342oveq2d 7362 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (0...(♯‘𝑊)) = (0...(♯‘(𝐹𝑊))))
4443eleq2d 2817 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (𝑁 ∈ (0...(♯‘𝑊)) ↔ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
4544biimpd 229 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑊 ∈ Word 𝐴) → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
4645ex 412 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑊 ∈ Word 𝐴 → (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
4746com13 88 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑊)) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
4847adantl 481 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 ∈ Word 𝐴 → (𝐹:𝐴𝐵𝑁 ∈ (0...(♯‘(𝐹𝑊))))))
49483imp21 1113 . . . . 5 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → 𝑁 ∈ (0...(♯‘(𝐹𝑊))))
5012, 13, 493jca 1128 . . . 4 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → ((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))))
51 swrdfv 14553 . . . 4 ((((𝐹𝑊) ∈ Word 𝐵𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐹𝑊)))) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
5250, 51sylan 580 . . 3 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖) = ((𝐹𝑊)‘(𝑖 + 𝑀)))
5338, 40, 523eqtr4d 2776 . 2 (((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) ∧ 𝑖 ∈ (0..^(𝑁𝑀))) → ((𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩))‘𝑖) = (((𝐹𝑊) substr ⟨𝑀, 𝑁⟩)‘𝑖))
5410, 24, 53eqfnfvd 6967 1 ((𝑊 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ 𝐹:𝐴𝐵) → (𝐹 ∘ (𝑊 substr ⟨𝑀, 𝑁⟩)) = ((𝐹𝑊) substr ⟨𝑀, 𝑁⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3902  cop 4582  ran crn 5617  ccom 5620   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11003   + caddc 11006  cmin 11341  ...cfz 13404  ..^cfzo 13551  chash 14234  Word cword 14417   substr csubstr 14545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-substr 14546
This theorem is referenced by:  pfxco  14742
  Copyright terms: Public domain W3C validator