Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | 2, 3, 4 | 3jaodan 1428 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
6 | 1, 5 | mpdan 683 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 |
This theorem is referenced by: wemaplem2 9236 r1val1 9475 xleadd1a 12916 xlt2add 12923 xmullem 12927 xmulgt0 12946 xmulasslem3 12949 xlemul1a 12951 xadddilem 12957 xadddi 12958 xadddi2 12960 isxmet2d 23388 icccvx 24019 ivthicc 24527 mbfmulc2lem 24716 c1lip1 25066 dvivth 25079 reeff1o 25511 coseq00topi 25564 tanabsge 25568 logcnlem3 25704 atantan 25978 atanbnd 25981 cvxcl 26039 ostthlem1 26680 iscgrglt 26779 tgdim01ln 26829 lnxfr 26831 lnext 26832 tgfscgr 26833 tglineeltr 26896 colmid 26953 prodtp 31043 xrpxdivcld 31111 s3f1 31123 cycpmco2 31302 cyc3co2 31309 archirngz 31345 archiabllem1b 31348 esumcst 31931 sgnmulsgn 32416 sgnmulsgp 32417 hgt750lemb 32536 exp11d 40246 fnwe2lem3 40793 |
Copyright terms: Public domain | W3C validator |