| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version | ||
| Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | 2, 3, 4 | 3jaodan 1433 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| 6 | 1, 5 | mpdan 687 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: wemaplem2 9440 r1val1 9686 xleadd1a 13154 xlt2add 13161 xmullem 13165 xmulgt0 13184 xmulasslem3 13187 xlemul1a 13189 xadddilem 13195 xadddi 13196 xadddi2 13198 chnccat 18534 isxmet2d 24243 icccvx 24876 ivthicc 25387 mbfmulc2lem 25576 c1lip1 25930 dvivth 25943 reeff1o 26385 coseq00topi 26439 tanabsge 26443 logcnlem3 26581 atantan 26861 atanbnd 26864 cvxcl 26923 ostthlem1 27566 iscgrglt 28493 tgdim01ln 28543 lnxfr 28545 lnext 28546 tgfscgr 28547 tglineeltr 28610 colmid 28667 prodtp 32815 sgnmulsgn 32830 sgnmulsgp 32831 xrpxdivcld 32922 s3f1 32935 gsumtp 33045 cycpmco2 33109 cyc3co2 33116 archirngz 33165 archiabllem1b 33168 constrelextdg2 33781 constrfiss 33785 cos9thpiminplylem1 33816 esumcst 34097 hgt750lemb 34690 weiunso 36531 exp11d 42445 fnwe2lem3 43170 chner 47008 |
| Copyright terms: Public domain | W3C validator |