Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | 2, 3, 4 | 3jaodan 1429 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
6 | 1, 5 | mpdan 684 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 |
This theorem is referenced by: wemaplem2 9383 r1val1 9622 xleadd1a 13067 xlt2add 13074 xmullem 13078 xmulgt0 13097 xmulasslem3 13100 xlemul1a 13102 xadddilem 13108 xadddi 13109 xadddi2 13111 isxmet2d 23563 icccvx 24196 ivthicc 24705 mbfmulc2lem 24894 c1lip1 25244 dvivth 25257 reeff1o 25689 coseq00topi 25742 tanabsge 25746 logcnlem3 25882 atantan 26156 atanbnd 26159 cvxcl 26217 ostthlem1 26858 iscgrglt 27011 tgdim01ln 27061 lnxfr 27063 lnext 27064 tgfscgr 27065 tglineeltr 27128 colmid 27185 prodtp 31276 xrpxdivcld 31344 s3f1 31356 cycpmco2 31535 cyc3co2 31542 archirngz 31578 archiabllem1b 31581 esumcst 32171 sgnmulsgn 32656 sgnmulsgp 32657 hgt750lemb 32776 exp11d 40541 fnwe2lem3 41094 |
Copyright terms: Public domain | W3C validator |