![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | 2, 3, 4 | 3jaodan 1431 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
6 | 1, 5 | mpdan 686 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ w3o 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 |
This theorem is referenced by: wemaplem2 9542 r1val1 9781 xleadd1a 13232 xlt2add 13239 xmullem 13243 xmulgt0 13262 xmulasslem3 13265 xlemul1a 13267 xadddilem 13273 xadddi 13274 xadddi2 13276 isxmet2d 23833 icccvx 24466 ivthicc 24975 mbfmulc2lem 25164 c1lip1 25514 dvivth 25527 reeff1o 25959 coseq00topi 26012 tanabsge 26016 logcnlem3 26152 atantan 26428 atanbnd 26431 cvxcl 26489 ostthlem1 27130 iscgrglt 27765 tgdim01ln 27815 lnxfr 27817 lnext 27818 tgfscgr 27819 tglineeltr 27882 colmid 27939 prodtp 32033 xrpxdivcld 32101 s3f1 32113 cycpmco2 32292 cyc3co2 32299 archirngz 32335 archiabllem1b 32338 esumcst 33061 sgnmulsgn 33548 sgnmulsgp 33549 hgt750lemb 33668 exp11d 41216 fnwe2lem3 41794 |
Copyright terms: Public domain | W3C validator |