| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version | ||
| Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | 2, 3, 4 | 3jaodan 1433 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| 6 | 1, 5 | mpdan 687 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: wemaplem2 9500 r1val1 9739 xleadd1a 13213 xlt2add 13220 xmullem 13224 xmulgt0 13243 xmulasslem3 13246 xlemul1a 13248 xadddilem 13254 xadddi 13255 xadddi2 13257 isxmet2d 24215 icccvx 24848 ivthicc 25359 mbfmulc2lem 25548 c1lip1 25902 dvivth 25915 reeff1o 26357 coseq00topi 26411 tanabsge 26415 logcnlem3 26553 atantan 26833 atanbnd 26836 cvxcl 26895 ostthlem1 27538 iscgrglt 28441 tgdim01ln 28491 lnxfr 28493 lnext 28494 tgfscgr 28495 tglineeltr 28558 colmid 28615 prodtp 32752 sgnmulsgn 32767 sgnmulsgp 32768 xrpxdivcld 32855 s3f1 32868 gsumtp 32998 cycpmco2 33090 cyc3co2 33097 archirngz 33143 archiabllem1b 33146 constrelextdg2 33737 constrfiss 33741 cos9thpiminplylem1 33772 esumcst 34053 hgt750lemb 34647 weiunso 36454 exp11d 42314 fnwe2lem3 43041 |
| Copyright terms: Public domain | W3C validator |