![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | 2, 3, 4 | 3jaodan 1430 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
6 | 1, 5 | mpdan 687 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
This theorem is referenced by: wemaplem2 9585 r1val1 9824 xleadd1a 13292 xlt2add 13299 xmullem 13303 xmulgt0 13322 xmulasslem3 13325 xlemul1a 13327 xadddilem 13333 xadddi 13334 xadddi2 13336 isxmet2d 24353 icccvx 24995 ivthicc 25507 mbfmulc2lem 25696 c1lip1 26051 dvivth 26064 reeff1o 26506 coseq00topi 26559 tanabsge 26563 logcnlem3 26701 atantan 26981 atanbnd 26984 cvxcl 27043 ostthlem1 27686 iscgrglt 28537 tgdim01ln 28587 lnxfr 28589 lnext 28590 tgfscgr 28591 tglineeltr 28654 colmid 28711 prodtp 32834 xrpxdivcld 32902 s3f1 32916 gsumtp 33044 cycpmco2 33136 cyc3co2 33143 archirngz 33179 archiabllem1b 33182 constrelextdg2 33752 esumcst 34044 sgnmulsgn 34531 sgnmulsgp 34532 hgt750lemb 34650 weiunso 36449 exp11d 42340 fnwe2lem3 43041 |
Copyright terms: Public domain | W3C validator |