Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | 2, 3, 4 | 3jaodan 1429 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
6 | 1, 5 | mpdan 684 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 |
This theorem is referenced by: wemaplem2 9306 r1val1 9544 xleadd1a 12987 xlt2add 12994 xmullem 12998 xmulgt0 13017 xmulasslem3 13020 xlemul1a 13022 xadddilem 13028 xadddi 13029 xadddi2 13031 isxmet2d 23480 icccvx 24113 ivthicc 24622 mbfmulc2lem 24811 c1lip1 25161 dvivth 25174 reeff1o 25606 coseq00topi 25659 tanabsge 25663 logcnlem3 25799 atantan 26073 atanbnd 26076 cvxcl 26134 ostthlem1 26775 iscgrglt 26875 tgdim01ln 26925 lnxfr 26927 lnext 26928 tgfscgr 26929 tglineeltr 26992 colmid 27049 prodtp 31141 xrpxdivcld 31209 s3f1 31221 cycpmco2 31400 cyc3co2 31407 archirngz 31443 archiabllem1b 31446 esumcst 32031 sgnmulsgn 32516 sgnmulsgp 32517 hgt750lemb 32636 exp11d 40325 fnwe2lem3 40877 |
Copyright terms: Public domain | W3C validator |