| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version | ||
| Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | 2, 3, 4 | 3jaodan 1433 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| 6 | 1, 5 | mpdan 687 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: wemaplem2 9433 r1val1 9679 xleadd1a 13152 xlt2add 13159 xmullem 13163 xmulgt0 13182 xmulasslem3 13185 xlemul1a 13187 xadddilem 13193 xadddi 13194 xadddi2 13196 chnccat 18532 isxmet2d 24243 icccvx 24876 ivthicc 25387 mbfmulc2lem 25576 c1lip1 25930 dvivth 25943 reeff1o 26385 coseq00topi 26439 tanabsge 26443 logcnlem3 26581 atantan 26861 atanbnd 26864 cvxcl 26923 ostthlem1 27566 iscgrglt 28493 tgdim01ln 28543 lnxfr 28545 lnext 28546 tgfscgr 28547 tglineeltr 28610 colmid 28667 prodtp 32808 sgnmulsgn 32823 sgnmulsgp 32824 xrpxdivcld 32913 s3f1 32926 gsumtp 33036 cycpmco2 33100 cyc3co2 33107 archirngz 33156 archiabllem1b 33159 constrelextdg2 33758 constrfiss 33762 cos9thpiminplylem1 33793 esumcst 34074 hgt750lemb 34667 weiunso 36506 exp11d 42365 fnwe2lem3 43091 |
| Copyright terms: Public domain | W3C validator |