![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | 2, 3, 4 | 3jaodan 1431 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
6 | 1, 5 | mpdan 686 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 |
This theorem is referenced by: wemaplem2 9616 r1val1 9855 xleadd1a 13315 xlt2add 13322 xmullem 13326 xmulgt0 13345 xmulasslem3 13348 xlemul1a 13350 xadddilem 13356 xadddi 13357 xadddi2 13359 isxmet2d 24358 icccvx 25000 ivthicc 25512 mbfmulc2lem 25701 c1lip1 26056 dvivth 26069 reeff1o 26509 coseq00topi 26562 tanabsge 26566 logcnlem3 26704 atantan 26984 atanbnd 26987 cvxcl 27046 ostthlem1 27689 iscgrglt 28540 tgdim01ln 28590 lnxfr 28592 lnext 28593 tgfscgr 28594 tglineeltr 28657 colmid 28714 prodtp 32831 xrpxdivcld 32899 s3f1 32913 gsumtp 33039 cycpmco2 33126 cyc3co2 33133 archirngz 33169 archiabllem1b 33172 constrelextdg2 33737 esumcst 34027 sgnmulsgn 34514 sgnmulsgp 34515 hgt750lemb 34633 weiunso 36432 exp11d 42313 fnwe2lem3 43009 |
Copyright terms: Public domain | W3C validator |