MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpjao3dan Structured version   Visualization version   GIF version

Theorem mpjao3dan 1434
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.)
Hypotheses
Ref Expression
mpjao3dan.1 ((𝜑𝜓) → 𝜒)
mpjao3dan.2 ((𝜑𝜃) → 𝜒)
mpjao3dan.3 ((𝜑𝜏) → 𝜒)
mpjao3dan.4 (𝜑 → (𝜓𝜃𝜏))
Assertion
Ref Expression
mpjao3dan (𝜑𝜒)

Proof of Theorem mpjao3dan
StepHypRef Expression
1 mpjao3dan.4 . 2 (𝜑 → (𝜓𝜃𝜏))
2 mpjao3dan.1 . . 3 ((𝜑𝜓) → 𝜒)
3 mpjao3dan.2 . . 3 ((𝜑𝜃) → 𝜒)
4 mpjao3dan.3 . . 3 ((𝜑𝜏) → 𝜒)
52, 3, 43jaodan 1433 . 2 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
61, 5mpdan 687 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088
This theorem is referenced by:  wemaplem2  9507  r1val1  9746  xleadd1a  13220  xlt2add  13227  xmullem  13231  xmulgt0  13250  xmulasslem3  13253  xlemul1a  13255  xadddilem  13261  xadddi  13262  xadddi2  13264  isxmet2d  24222  icccvx  24855  ivthicc  25366  mbfmulc2lem  25555  c1lip1  25909  dvivth  25922  reeff1o  26364  coseq00topi  26418  tanabsge  26422  logcnlem3  26560  atantan  26840  atanbnd  26843  cvxcl  26902  ostthlem1  27545  iscgrglt  28448  tgdim01ln  28498  lnxfr  28500  lnext  28501  tgfscgr  28502  tglineeltr  28565  colmid  28622  prodtp  32759  sgnmulsgn  32774  sgnmulsgp  32775  xrpxdivcld  32862  s3f1  32875  gsumtp  33005  cycpmco2  33097  cyc3co2  33104  archirngz  33150  archiabllem1b  33153  constrelextdg2  33744  constrfiss  33748  cos9thpiminplylem1  33779  esumcst  34060  hgt750lemb  34654  weiunso  36461  exp11d  42321  fnwe2lem3  43048
  Copyright terms: Public domain W3C validator