![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | 2, 3, 4 | 3jaodan 1430 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
6 | 1, 5 | mpdan 685 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 |
This theorem is referenced by: wemaplem2 9544 r1val1 9783 xleadd1a 13234 xlt2add 13241 xmullem 13245 xmulgt0 13264 xmulasslem3 13267 xlemul1a 13269 xadddilem 13275 xadddi 13276 xadddi2 13278 isxmet2d 23840 icccvx 24473 ivthicc 24982 mbfmulc2lem 25171 c1lip1 25521 dvivth 25534 reeff1o 25966 coseq00topi 26019 tanabsge 26023 logcnlem3 26159 atantan 26435 atanbnd 26438 cvxcl 26496 ostthlem1 27137 iscgrglt 27803 tgdim01ln 27853 lnxfr 27855 lnext 27856 tgfscgr 27857 tglineeltr 27920 colmid 27977 prodtp 32071 xrpxdivcld 32139 s3f1 32151 cycpmco2 32333 cyc3co2 32340 archirngz 32376 archiabllem1b 32379 esumcst 33130 sgnmulsgn 33617 sgnmulsgp 33618 hgt750lemb 33737 exp11d 41298 fnwe2lem3 41876 |
Copyright terms: Public domain | W3C validator |