| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version | ||
| Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | 2, 3, 4 | 3jaodan 1433 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| 6 | 1, 5 | mpdan 687 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: wemaplem2 9458 r1val1 9701 xleadd1a 13173 xlt2add 13180 xmullem 13184 xmulgt0 13203 xmulasslem3 13206 xlemul1a 13208 xadddilem 13214 xadddi 13215 xadddi2 13217 isxmet2d 24231 icccvx 24864 ivthicc 25375 mbfmulc2lem 25564 c1lip1 25918 dvivth 25931 reeff1o 26373 coseq00topi 26427 tanabsge 26431 logcnlem3 26569 atantan 26849 atanbnd 26852 cvxcl 26911 ostthlem1 27554 iscgrglt 28477 tgdim01ln 28527 lnxfr 28529 lnext 28530 tgfscgr 28531 tglineeltr 28594 colmid 28651 prodtp 32785 sgnmulsgn 32800 sgnmulsgp 32801 xrpxdivcld 32888 s3f1 32901 gsumtp 33024 cycpmco2 33088 cyc3co2 33095 archirngz 33144 archiabllem1b 33147 constrelextdg2 33716 constrfiss 33720 cos9thpiminplylem1 33751 esumcst 34032 hgt750lemb 34626 weiunso 36442 exp11d 42302 fnwe2lem3 43028 |
| Copyright terms: Public domain | W3C validator |