| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version | ||
| Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | 2, 3, 4 | 3jaodan 1433 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| 6 | 1, 5 | mpdan 687 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: wemaplem2 9507 r1val1 9746 xleadd1a 13220 xlt2add 13227 xmullem 13231 xmulgt0 13250 xmulasslem3 13253 xlemul1a 13255 xadddilem 13261 xadddi 13262 xadddi2 13264 isxmet2d 24222 icccvx 24855 ivthicc 25366 mbfmulc2lem 25555 c1lip1 25909 dvivth 25922 reeff1o 26364 coseq00topi 26418 tanabsge 26422 logcnlem3 26560 atantan 26840 atanbnd 26843 cvxcl 26902 ostthlem1 27545 iscgrglt 28448 tgdim01ln 28498 lnxfr 28500 lnext 28501 tgfscgr 28502 tglineeltr 28565 colmid 28622 prodtp 32759 sgnmulsgn 32774 sgnmulsgp 32775 xrpxdivcld 32862 s3f1 32875 gsumtp 33005 cycpmco2 33097 cyc3co2 33104 archirngz 33150 archiabllem1b 33153 constrelextdg2 33744 constrfiss 33748 cos9thpiminplylem1 33779 esumcst 34060 hgt750lemb 34654 weiunso 36461 exp11d 42321 fnwe2lem3 43048 |
| Copyright terms: Public domain | W3C validator |