| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version | ||
| Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.4 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 2 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | mpjao3dan.3 | . . 3 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | 2, 3, 4 | 3jaodan 1433 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| 6 | 1, 5 | mpdan 687 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 |
| This theorem is referenced by: wemaplem2 9566 r1val1 9805 xleadd1a 13274 xlt2add 13281 xmullem 13285 xmulgt0 13304 xmulasslem3 13307 xlemul1a 13309 xadddilem 13315 xadddi 13316 xadddi2 13318 isxmet2d 24271 icccvx 24904 ivthicc 25416 mbfmulc2lem 25605 c1lip1 25959 dvivth 25972 reeff1o 26414 coseq00topi 26468 tanabsge 26472 logcnlem3 26610 atantan 26890 atanbnd 26893 cvxcl 26952 ostthlem1 27595 iscgrglt 28498 tgdim01ln 28548 lnxfr 28550 lnext 28551 tgfscgr 28552 tglineeltr 28615 colmid 28672 prodtp 32811 sgnmulsgn 32826 sgnmulsgp 32827 xrpxdivcld 32914 s3f1 32927 gsumtp 33057 cycpmco2 33149 cyc3co2 33156 archirngz 33192 archiabllem1b 33195 constrelextdg2 33786 constrfiss 33790 cos9thpiminplylem1 33821 esumcst 34099 hgt750lemb 34693 weiunso 36489 exp11d 42342 fnwe2lem3 43043 |
| Copyright terms: Public domain | W3C validator |