Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineelsb2 Structured version   Visualization version   GIF version

Theorem lineelsb2 33734
 Description: If 𝑆 lies on 𝑃𝑄, then 𝑃𝑄 = 𝑃𝑆. Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineelsb2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))

Proof of Theorem lineelsb2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
2 simpl3l 1225 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑆 ∈ (𝔼‘𝑁))
3 simpl21 1248 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
4 simpl22 1249 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
5 brcolinear 33645 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑆 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)))
61, 2, 3, 4, 5syl13anc 1369 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑆 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)))
76biimpa 480 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩))
8 simpr 488 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
9 brcolinear 33645 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
101, 8, 3, 4, 9syl13anc 1369 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
1110adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
12 btwnconn3 33689 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ((𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
131, 3, 2, 8, 4, 12syl122anc 1376 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1413imp 410 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
15 btwncolinear3 33657 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
161, 3, 8, 2, 15syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
17 btwncolinear5 33659 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
181, 3, 2, 8, 17syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
1916, 18jaod 856 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2019adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2114, 20mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
2221expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
23 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
241, 2, 3, 4, 23btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑆 Btwn ⟨𝑄, 𝑃⟩)
25 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
261, 4, 2, 3, 8, 24, 25btwnexch3and 33607 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
27 btwncolinear4 33658 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
281, 2, 8, 3, 27syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2928adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3026, 29mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
3130expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
32 simprl 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
33 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
341, 4, 8, 3, 33btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
351, 3, 2, 4, 8, 32, 34btwnexchand 33612 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
3616adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3735, 36mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
3837expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3922, 31, 383jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
4011, 39sylbid 243 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
41 brcolinear 33645 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
421, 8, 3, 2, 41syl13anc 1369 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
4342adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
44 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
45 simprl 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
461, 3, 8, 2, 4, 44, 45btwnexchand 33612 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
47 btwncolinear5 33659 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
481, 3, 4, 8, 47syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4948adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5046, 49mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
5150expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
52 simpl3r 1226 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑆)
5352necomd 3042 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑆𝑃)
5453adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆𝑃)
55 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
561, 2, 3, 4, 55btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆 Btwn ⟨𝑄, 𝑃⟩)
57 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
58 btwnouttr2 33608 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
591, 4, 2, 3, 8, 58syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
6059adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
6154, 56, 57, 60mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
62 btwncolinear4 33658 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
631, 4, 8, 3, 62syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6463adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6561, 64mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
6665expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6752adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑆)
68 simprl 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
69 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
701, 2, 8, 3, 69btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
71 btwnconn1 33687 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
721, 3, 2, 4, 8, 71syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
7372adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
7467, 68, 70, 73mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
75 btwncolinear3 33657 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
761, 3, 8, 4, 75syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7776, 48jaod 856 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7877adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7974, 78mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
8079expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8151, 66, 803jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8243, 81sylbid 243 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8340, 82impbid 215 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
8410adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
85 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
861, 8, 3, 4, 85btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑄, 𝑃⟩)
87 simprl 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
881, 4, 8, 3, 2, 86, 87btwnexch3and 33607 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑃 Btwn ⟨𝑥, 𝑆⟩)
89 btwncolinear2 33656 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
901, 8, 2, 3, 89syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
9190adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
9288, 91mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
9392expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
94 simpl23 1250 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑄)
9594necomd 3042 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄𝑃)
9695adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
97 simprl 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
98 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
99 btwnconn2 33688 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1001, 4, 3, 2, 8, 99syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
101100adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
10296, 97, 98, 101mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
10319adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
104102, 103mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
105104expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
10694adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑄)
107 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1081, 3, 4, 2, 107btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
109 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
1101, 4, 8, 3, 109btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
111 btwnouttr 33610 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
1121, 2, 3, 4, 8, 111syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
113112adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
114106, 108, 110, 113mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
11528adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
116114, 115mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
117116expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
11893, 105, 1173jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
11984, 118sylbid 243 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
12042adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
121 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
1221, 8, 3, 2, 121btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑆, 𝑃⟩)
123 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1241, 3, 4, 2, 123btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
1251, 2, 8, 3, 4, 122, 124btwnexch3and 33607 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑥, 𝑄⟩)
126 btwncolinear2 33656 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
1271, 8, 4, 3, 126syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
128127adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
130129expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
13153adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆𝑃)
132 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1331, 3, 4, 2, 132btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
134 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
135 btwnconn2 33688 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
1361, 2, 3, 4, 8, 135syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
137136adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
138131, 133, 134, 137mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
13977adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
140138, 139mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
141140expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
14252adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑆)
143 simprl 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
144 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
1451, 2, 8, 3, 144btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
146 btwnouttr 33610 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
1471, 4, 3, 2, 8, 146syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
148147adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
149142, 143, 145, 148mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
15063adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
151149, 150mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
152151expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
153130, 141, 1523jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
154120, 153sylbid 243 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
155119, 154impbid 215 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
15610adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
157 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
158 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1591, 4, 2, 3, 158btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
1601, 3, 8, 4, 2, 157, 159btwnexchand 33612 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
16118adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
162160, 161mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
163162expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
16495adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
165 simprl 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
166 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
167 btwnouttr2 33608 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
1681, 2, 4, 3, 8, 167syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
169168adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
170164, 165, 166, 169mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
17128adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
172170, 171mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
173172expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
17494adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑄)
175 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1761, 4, 2, 3, 175btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
177 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
1781, 4, 8, 3, 177btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
179 btwnconn1 33687 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1801, 3, 4, 2, 8, 179syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
181180adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
182174, 176, 178, 181mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
18319adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
184182, 183mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
185184expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
186163, 173, 1853jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
187156, 186sylbid 243 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
18842adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
189 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1901, 4, 2, 3, 189btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
191 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
192 btwnconn3 33689 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
1931, 3, 4, 8, 2, 192syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
194193adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
195190, 191, 194mp2and 698 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
19677adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
197195, 196mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
198197expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
199 simprl 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
200 simprr 772 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
2011, 2, 4, 3, 8, 199, 200btwnexch3and 33607 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
20263adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
203201, 202mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
204203expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
205 simprl 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
2061, 4, 2, 3, 205btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
207 simprr 772 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
2081, 2, 8, 3, 207btwncomand 33601 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
2091, 3, 4, 2, 8, 206, 208btwnexchand 33612 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
21076adantr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
211209, 210mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
212211expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
213198, 204, 2123jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
214188, 213sylbid 243 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
215187, 214impbid 215 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
21683, 155, 2153jaodan 1427 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2177, 216syldan 594 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
218217adantrl 715 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
219218an32s 651 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
220219rabbidva 3425 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
221220ex 416 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → ((𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩}))
222 fvline2 33732 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
2232223adant3 1129 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
224223eleq2d 2875 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) ↔ 𝑆 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩}))
225 breq1 5033 . . . 4 (𝑥 = 𝑆 → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑆 Colinear ⟨𝑃, 𝑄⟩))
226225elrab 3628 . . 3 (𝑆 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} ↔ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩))
227224, 226syl6bb 290 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) ↔ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)))
228 simp1 1133 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑁 ∈ ℕ)
229 simp21 1203 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑃 ∈ (𝔼‘𝑁))
230 simp3l 1198 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑆 ∈ (𝔼‘𝑁))
231 simp3r 1199 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑃𝑆)
232 fvline2 33732 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑆) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
233228, 229, 230, 231, 232syl13anc 1369 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑆) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
234223, 233eqeq12d 2814 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → ((𝑃Line𝑄) = (𝑃Line𝑆) ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩}))
235221, 227, 2343imtr4d 297 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∨ w3o 1083   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  {crab 3110  ⟨cop 4531   class class class wbr 5030  ‘cfv 6324  (class class class)co 7135  ℕcn 11627  𝔼cee 26689   Btwn cbtwn 26690   Colinear ccolin 33623  Linecline2 33720 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-ec 8276  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-oi 8960  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-n0 11888  df-z 11972  df-uz 12234  df-rp 12380  df-ico 12734  df-icc 12735  df-fz 12888  df-fzo 13031  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-ee 26692  df-btwn 26693  df-cgr 26694  df-ofs 33569  df-colinear 33625  df-ifs 33626  df-cgr3 33627  df-fs 33628  df-line2 33723 This theorem is referenced by:  linethru  33739
 Copyright terms: Public domain W3C validator