Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineelsb2 Structured version   Visualization version   GIF version

Theorem lineelsb2 35581
Description: If 𝑆 lies on 𝑃𝑄, then 𝑃𝑄 = 𝑃𝑆. Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineelsb2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))

Proof of Theorem lineelsb2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
2 simpl3l 1225 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑆 ∈ (𝔼‘𝑁))
3 simpl21 1248 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
4 simpl22 1249 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
5 brcolinear 35492 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑆 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)))
61, 2, 3, 4, 5syl13anc 1369 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑆 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)))
76biimpa 476 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩))
8 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
9 brcolinear 35492 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
101, 8, 3, 4, 9syl13anc 1369 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
1110adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
12 btwnconn3 35536 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ((𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
131, 3, 2, 8, 4, 12syl122anc 1376 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1413imp 406 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
15 btwncolinear3 35504 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
161, 3, 8, 2, 15syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
17 btwncolinear5 35506 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
181, 3, 2, 8, 17syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
1916, 18jaod 856 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2019adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2114, 20mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
2221expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
23 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
241, 2, 3, 4, 23btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑆 Btwn ⟨𝑄, 𝑃⟩)
25 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
261, 4, 2, 3, 8, 24, 25btwnexch3and 35454 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
27 btwncolinear4 35505 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
281, 2, 8, 3, 27syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2928adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3026, 29mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
3130expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
32 simprl 768 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
33 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
341, 4, 8, 3, 33btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
351, 3, 2, 4, 8, 32, 34btwnexchand 35459 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
3616adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3735, 36mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
3837expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
3922, 31, 383jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
4011, 39sylbid 239 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
41 brcolinear 35492 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
421, 8, 3, 2, 41syl13anc 1369 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
4342adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
44 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
45 simprl 768 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
461, 3, 8, 2, 4, 44, 45btwnexchand 35459 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
47 btwncolinear5 35506 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
481, 3, 4, 8, 47syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4948adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5046, 49mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
5150expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
52 simpl3r 1226 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑆)
5352necomd 2988 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑆𝑃)
5453adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆𝑃)
55 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
561, 2, 3, 4, 55btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆 Btwn ⟨𝑄, 𝑃⟩)
57 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
58 btwnouttr2 35455 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
591, 4, 2, 3, 8, 58syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
6059adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑆𝑃𝑆 Btwn ⟨𝑄, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
6154, 56, 57, 60mp3and 1460 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
62 btwncolinear4 35505 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
631, 4, 8, 3, 62syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6463adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6561, 64mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
6665expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6752adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑆)
68 simprl 768 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑄⟩)
69 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
701, 2, 8, 3, 69btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
71 btwnconn1 35534 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
721, 3, 2, 4, 8, 71syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
7372adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑆𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
7467, 68, 70, 73mp3and 1460 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
75 btwncolinear3 35504 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
761, 3, 8, 4, 75syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7776, 48jaod 856 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7877adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7974, 78mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
8079expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8151, 66, 803jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8243, 81sylbid 239 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
8340, 82impbid 211 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Btwn ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
8410adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
85 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
861, 8, 3, 4, 85btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑄, 𝑃⟩)
87 simprl 768 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
881, 4, 8, 3, 2, 86, 87btwnexch3and 35454 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑃 Btwn ⟨𝑥, 𝑆⟩)
89 btwncolinear2 35503 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
901, 8, 2, 3, 89syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
9190adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑃 Btwn ⟨𝑥, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
9288, 91mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
9392expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
94 simpl23 1250 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑄)
9594necomd 2988 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄𝑃)
9695adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
97 simprl 768 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
98 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
99 btwnconn2 35535 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1001, 4, 3, 2, 8, 99syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
101100adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
10296, 97, 98, 101mp3and 1460 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
10319adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
104102, 103mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
105104expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
10694adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑄)
107 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1081, 3, 4, 2, 107btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
109 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
1101, 4, 8, 3, 109btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
111 btwnouttr 35457 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
1121, 2, 3, 4, 8, 111syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
113112adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑄𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
114106, 108, 110, 113mp3and 1460 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
11528adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
116114, 115mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
117116expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
11893, 105, 1173jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
11984, 118sylbid 239 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
12042adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
121 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
1221, 8, 3, 2, 121btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑆, 𝑃⟩)
123 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1241, 3, 4, 2, 123btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
1251, 2, 8, 3, 4, 122, 124btwnexch3and 35454 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑃 Btwn ⟨𝑥, 𝑄⟩)
126 btwncolinear2 35503 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
1271, 8, 4, 3, 126syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
128127adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
129125, 128mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
130129expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
13153adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑆𝑃)
132 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
1331, 3, 4, 2, 132btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑄⟩)
134 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
135 btwnconn2 35535 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
1361, 2, 3, 4, 8, 135syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
137136adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑆𝑃𝑃 Btwn ⟨𝑆, 𝑄⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
138131, 133, 134, 137mp3and 1460 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
13977adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
140138, 139mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
141140expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
14252adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑆)
143 simprl 768 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑆⟩)
144 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
1451, 2, 8, 3, 144btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
146 btwnouttr 35457 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
1471, 4, 3, 2, 8, 146syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
148147adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑆𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
149142, 143, 145, 148mp3and 1460 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
15063adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
151149, 150mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑆⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
152151expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
153130, 141, 1523jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
154120, 153sylbid 239 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
155119, 154impbid 211 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑆⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
15610adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
157 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑄⟩)
158 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1591, 4, 2, 3, 158btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
1601, 3, 8, 4, 2, 157, 159btwnexchand 35459 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
16118adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
162160, 161mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
163162expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
16495adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
165 simprl 768 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
166 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
167 btwnouttr2 35455 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
1681, 2, 4, 3, 8, 167syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
169168adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → 𝑃 Btwn ⟨𝑆, 𝑥⟩))
170164, 165, 166, 169mp3and 1460 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
17128adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
172170, 171mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
173172expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
17494adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑃𝑄)
175 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1761, 4, 2, 3, 175btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
177 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑥, 𝑃⟩)
1781, 4, 8, 3, 177btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
179 btwnconn1 35534 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
1801, 3, 4, 2, 8, 179syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
181180adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑃𝑄𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑄 Btwn ⟨𝑃, 𝑥⟩) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩)))
182174, 176, 178, 181mp3and 1460 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → (𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩))
18319adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → ((𝑆 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
184182, 183mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑄 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑆⟩)
185184expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
186163, 173, 1853jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
187156, 186sylbid 239 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑆⟩))
18842adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩)))
189 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
1901, 4, 2, 3, 189btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
191 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Btwn ⟨𝑃, 𝑆⟩)
192 btwnconn3 35536 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁))) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
1931, 3, 4, 8, 2, 192syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
194193adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑆⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
195190, 191, 194mp2and 696 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
19677adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
197195, 196mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑆⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
198197expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Btwn ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
199 simprl 768 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
200 simprr 770 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑆, 𝑥⟩)
2011, 2, 4, 3, 8, 199, 200btwnexch3and 35454 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
20263adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
203201, 202mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝑆, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
204203expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑃 Btwn ⟨𝑆, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
205 simprl 768 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑆, 𝑃⟩)
2061, 4, 2, 3, 205btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑆⟩)
207 simprr 770 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑥, 𝑃⟩)
2081, 2, 8, 3, 207btwncomand 35448 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑆 Btwn ⟨𝑃, 𝑥⟩)
2091, 3, 4, 2, 8, 206, 208btwnexchand 35459 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑄 Btwn ⟨𝑃, 𝑥⟩)
21076adantr 480 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
211209, 210mpd 15 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑄 Btwn ⟨𝑆, 𝑃⟩ ∧ 𝑆 Btwn ⟨𝑥, 𝑃⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
212211expr 456 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑆 Btwn ⟨𝑥, 𝑃⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
213198, 204, 2123jaod 1425 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → ((𝑥 Btwn ⟨𝑃, 𝑆⟩ ∨ 𝑃 Btwn ⟨𝑆, 𝑥⟩ ∨ 𝑆 Btwn ⟨𝑥, 𝑃⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
214188, 213sylbid 239 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑆⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
215187, 214impbid 211 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑄 Btwn ⟨𝑆, 𝑃⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
21683, 155, 2153jaodan 1427 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑆⟩ ∨ 𝑄 Btwn ⟨𝑆, 𝑃⟩)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
2177, 216syldan 590 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
218217adantrl 713 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
219218an32s 649 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑥 Colinear ⟨𝑃, 𝑆⟩))
220219rabbidva 3431 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
221220ex 412 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → ((𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩}))
222 fvline2 35579 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
2232223adant3 1129 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
224223eleq2d 2811 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) ↔ 𝑆 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩}))
225 breq1 5141 . . . 4 (𝑥 = 𝑆 → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑆 Colinear ⟨𝑃, 𝑄⟩))
226225elrab 3675 . . 3 (𝑆 ∈ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} ↔ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩))
227224, 226bitrdi 287 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) ↔ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑆 Colinear ⟨𝑃, 𝑄⟩)))
228 simp1 1133 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑁 ∈ ℕ)
229 simp21 1203 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑃 ∈ (𝔼‘𝑁))
230 simp3l 1198 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑆 ∈ (𝔼‘𝑁))
231 simp3r 1199 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → 𝑃𝑆)
232 fvline2 35579 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑆) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
233228, 229, 230, 231, 232syl13anc 1369 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑃Line𝑆) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩})
234223, 233eqeq12d 2740 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → ((𝑃Line𝑄) = (𝑃Line𝑆) ↔ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑆⟩}))
235221, 227, 2343imtr4d 294 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) ∧ (𝑆 ∈ (𝔼‘𝑁) ∧ 𝑃𝑆)) → (𝑆 ∈ (𝑃Line𝑄) → (𝑃Line𝑄) = (𝑃Line𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wne 2932  {crab 3424  cop 4626   class class class wbr 5138  cfv 6533  (class class class)co 7401  cn 12208  𝔼cee 28581   Btwn cbtwn 28582   Colinear ccolin 35470  Linecline2 35567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-ec 8700  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-ee 28584  df-btwn 28585  df-cgr 28586  df-ofs 35416  df-colinear 35472  df-ifs 35473  df-cgr3 35474  df-fs 35475  df-line2 35570
This theorem is referenced by:  linethru  35586
  Copyright terms: Public domain W3C validator