Step | Hyp | Ref
| Expression |
1 | | nnre 11910 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
2 | 1 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ (∫2‘𝐹) = +∞) → 𝑛 ∈ ℝ) |
3 | 2 | ltpnfd 12786 |
. . . . . . . . . 10
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ (∫2‘𝐹) = +∞) → 𝑛 < +∞) |
4 | | iftrue 4462 |
. . . . . . . . . . 11
⊢
((∫2‘𝐹) = +∞ →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) = 𝑛) |
5 | 4 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ (∫2‘𝐹) = +∞) →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) = 𝑛) |
6 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ (∫2‘𝐹) = +∞) →
(∫2‘𝐹)
= +∞) |
7 | 3, 5, 6 | 3brtr4d 5102 |
. . . . . . . . 9
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ (∫2‘𝐹) = +∞) →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫2‘𝐹)) |
8 | | iffalse 4465 |
. . . . . . . . . . 11
⊢ (¬
(∫2‘𝐹)
= +∞ → if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) = ((∫2‘𝐹) − (1 / 𝑛))) |
9 | 8 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ ¬ (∫2‘𝐹) = +∞) →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) = ((∫2‘𝐹) − (1 / 𝑛))) |
10 | | itg2cl 24802 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) ∈
ℝ*) |
11 | | xrrebnd 12831 |
. . . . . . . . . . . . . . 15
⊢
((∫2‘𝐹) ∈ ℝ* →
((∫2‘𝐹) ∈ ℝ ↔ (-∞ <
(∫2‘𝐹)
∧ (∫2‘𝐹) < +∞))) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((∫2‘𝐹) ∈ ℝ ↔ (-∞ <
(∫2‘𝐹)
∧ (∫2‘𝐹) < +∞))) |
13 | | itg2ge0 24805 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ 0 ≤ (∫2‘𝐹)) |
14 | | mnflt0 12790 |
. . . . . . . . . . . . . . . . 17
⊢ -∞
< 0 |
15 | | mnfxr 10963 |
. . . . . . . . . . . . . . . . . 18
⊢ -∞
∈ ℝ* |
16 | | 0xr 10953 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ* |
17 | | xrltletr 12820 |
. . . . . . . . . . . . . . . . . 18
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ (∫2‘𝐹) ∈ ℝ*) →
((-∞ < 0 ∧ 0 ≤ (∫2‘𝐹)) → -∞ <
(∫2‘𝐹))) |
18 | 15, 16, 10, 17 | mp3an12i 1463 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((-∞ < 0 ∧ 0 ≤ (∫2‘𝐹)) → -∞ <
(∫2‘𝐹))) |
19 | 14, 18 | mpani 692 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (0 ≤ (∫2‘𝐹) → -∞ <
(∫2‘𝐹))) |
20 | 13, 19 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ -∞ < (∫2‘𝐹)) |
21 | 20 | biantrurd 532 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((∫2‘𝐹) < +∞ ↔ (-∞ <
(∫2‘𝐹)
∧ (∫2‘𝐹) < +∞))) |
22 | | nltpnft 12827 |
. . . . . . . . . . . . . . . 16
⊢
((∫2‘𝐹) ∈ ℝ* →
((∫2‘𝐹) = +∞ ↔ ¬
(∫2‘𝐹)
< +∞)) |
23 | 10, 22 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((∫2‘𝐹) = +∞ ↔ ¬
(∫2‘𝐹)
< +∞)) |
24 | 23 | con2bid 354 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((∫2‘𝐹) < +∞ ↔ ¬
(∫2‘𝐹)
= +∞)) |
25 | 12, 21, 24 | 3bitr2rd 307 |
. . . . . . . . . . . . 13
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (¬ (∫2‘𝐹) = +∞ ↔
(∫2‘𝐹)
∈ ℝ)) |
26 | 25 | biimpa 476 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ ¬ (∫2‘𝐹) = +∞) →
(∫2‘𝐹)
∈ ℝ) |
27 | 26 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ ¬ (∫2‘𝐹) = +∞) →
(∫2‘𝐹)
∈ ℝ) |
28 | | nnrp 12670 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
29 | 28 | rpreccld 12711 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
30 | 29 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ ¬ (∫2‘𝐹) = +∞) → (1 / 𝑛) ∈
ℝ+) |
31 | 27, 30 | ltsubrpd 12733 |
. . . . . . . . . 10
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ ¬ (∫2‘𝐹) = +∞) →
((∫2‘𝐹) − (1 / 𝑛)) < (∫2‘𝐹)) |
32 | 9, 31 | eqbrtrd 5092 |
. . . . . . . . 9
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ ¬ (∫2‘𝐹) = +∞) →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫2‘𝐹)) |
33 | 7, 32 | pm2.61dan 809 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫2‘𝐹)) |
34 | | nnrecre 11945 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
35 | 34 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ ¬ (∫2‘𝐹) = +∞) → (1 / 𝑛) ∈ ℝ) |
36 | 27, 35 | resubcld 11333 |
. . . . . . . . . . 11
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ ¬ (∫2‘𝐹) = +∞) →
((∫2‘𝐹) − (1 / 𝑛)) ∈ ℝ) |
37 | 2, 36 | ifclda 4491 |
. . . . . . . . . 10
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ) |
38 | 37 | rexrd 10956 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈
ℝ*) |
39 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ (∫2‘𝐹) ∈
ℝ*) |
40 | | xrltnle 10973 |
. . . . . . . . 9
⊢
((if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ* ∧
(∫2‘𝐹)
∈ ℝ*) → (if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫2‘𝐹) ↔ ¬
(∫2‘𝐹)
≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
41 | 38, 39, 40 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ (if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫2‘𝐹) ↔ ¬
(∫2‘𝐹)
≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
42 | 33, 41 | mpbid 231 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ ¬ (∫2‘𝐹) ≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))) |
43 | | itg2leub 24804 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ*) →
((∫2‘𝐹) ≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 →
(∫1‘𝑓)
≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))))) |
44 | 38, 43 | syldan 590 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ ((∫2‘𝐹) ≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 →
(∫1‘𝑓)
≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))))) |
45 | 42, 44 | mtbid 323 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ ¬ ∀𝑓
∈ dom ∫1(𝑓 ∘r ≤ 𝐹 → (∫1‘𝑓) ≤
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
46 | | rexanali 3191 |
. . . . . 6
⊢
(∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ ¬ (∫1‘𝑓) ≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))) ↔ ¬ ∀𝑓 ∈ dom ∫1(𝑓 ∘r ≤ 𝐹 →
(∫1‘𝑓)
≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
47 | 45, 46 | sylibr 233 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ ¬ (∫1‘𝑓) ≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
48 | | itg1cl 24754 |
. . . . . . . 8
⊢ (𝑓 ∈ dom ∫1
→ (∫1‘𝑓) ∈ ℝ) |
49 | | ltnle 10985 |
. . . . . . . 8
⊢
((if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ ∧
(∫1‘𝑓)
∈ ℝ) → (if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓) ↔ ¬
(∫1‘𝑓)
≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
50 | 37, 48, 49 | syl2an 595 |
. . . . . . 7
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ 𝑓 ∈ dom
∫1) → (if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓) ↔ ¬
(∫1‘𝑓)
≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
51 | 50 | anbi2d 628 |
. . . . . 6
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
∧ 𝑓 ∈ dom
∫1) → ((𝑓 ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓)) ↔ (𝑓 ∘r ≤ 𝐹 ∧ ¬ (∫1‘𝑓) ≤
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))))) |
52 | 51 | rexbidva 3224 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ (∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓)) ↔ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ ¬ (∫1‘𝑓) ≤ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))))) |
53 | 47, 52 | mpbird 256 |
. . . 4
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑛 ∈ ℕ)
→ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓))) |
54 | 53 | ralrimiva 3107 |
. . 3
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∀𝑛 ∈
ℕ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓))) |
55 | | ovex 7288 |
. . . . 5
⊢ (ℝ
↑m ℝ) ∈ V |
56 | | i1ff 24745 |
. . . . . . 7
⊢ (𝑥 ∈ dom ∫1
→ 𝑥:ℝ⟶ℝ) |
57 | | reex 10893 |
. . . . . . . 8
⊢ ℝ
∈ V |
58 | 57, 57 | elmap 8617 |
. . . . . . 7
⊢ (𝑥 ∈ (ℝ
↑m ℝ) ↔ 𝑥:ℝ⟶ℝ) |
59 | 56, 58 | sylibr 233 |
. . . . . 6
⊢ (𝑥 ∈ dom ∫1
→ 𝑥 ∈ (ℝ
↑m ℝ)) |
60 | 59 | ssriv 3921 |
. . . . 5
⊢ dom
∫1 ⊆ (ℝ ↑m ℝ) |
61 | 55, 60 | ssexi 5241 |
. . . 4
⊢ dom
∫1 ∈ V |
62 | | nnenom 13628 |
. . . 4
⊢ ℕ
≈ ω |
63 | | breq1 5073 |
. . . . 5
⊢ (𝑓 = (𝑔‘𝑛) → (𝑓 ∘r ≤ 𝐹 ↔ (𝑔‘𝑛) ∘r ≤ 𝐹)) |
64 | | fveq2 6756 |
. . . . . 6
⊢ (𝑓 = (𝑔‘𝑛) → (∫1‘𝑓) =
(∫1‘(𝑔‘𝑛))) |
65 | 64 | breq2d 5082 |
. . . . 5
⊢ (𝑓 = (𝑔‘𝑛) → (if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓) ↔
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛)))) |
66 | 63, 65 | anbi12d 630 |
. . . 4
⊢ (𝑓 = (𝑔‘𝑛) → ((𝑓 ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓)) ↔ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) |
67 | 61, 62, 66 | axcc4 10126 |
. . 3
⊢
(∀𝑛 ∈
ℕ ∃𝑓 ∈ dom
∫1(𝑓
∘r ≤ 𝐹
∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘𝑓)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
((𝑔‘𝑛) ∘r ≤ 𝐹 ∧
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) |
68 | 54, 67 | syl 17 |
. 2
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∃𝑔(𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) |
69 | | simprl 767 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → 𝑔:ℕ⟶dom
∫1) |
70 | | simpl 482 |
. . . . . . 7
⊢ (((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))) → (𝑔‘𝑛) ∘r ≤ 𝐹) |
71 | 70 | ralimi 3086 |
. . . . . 6
⊢
(∀𝑛 ∈
ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∘r ≤ 𝐹) |
72 | 71 | ad2antll 725 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∘r ≤ 𝐹) |
73 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (∫2‘𝐹) ∈
ℝ*) |
74 | | ffvelrn 6941 |
. . . . . . . . . . . 12
⊢ ((𝑔:ℕ⟶dom
∫1 ∧ 𝑛
∈ ℕ) → (𝑔‘𝑛) ∈ dom
∫1) |
75 | | itg1cl 24754 |
. . . . . . . . . . . 12
⊢ ((𝑔‘𝑛) ∈ dom ∫1 →
(∫1‘(𝑔‘𝑛)) ∈ ℝ) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑔:ℕ⟶dom
∫1 ∧ 𝑛
∈ ℕ) → (∫1‘(𝑔‘𝑛)) ∈ ℝ) |
77 | 76 | fmpttd 6971 |
. . . . . . . . . 10
⊢ (𝑔:ℕ⟶dom
∫1 → (𝑛
∈ ℕ ↦ (∫1‘(𝑔‘𝑛))):ℕ⟶ℝ) |
78 | 77 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))):ℕ⟶ℝ) |
79 | 78 | frnd 6592 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) ⊆ ℝ) |
80 | | ressxr 10950 |
. . . . . . . 8
⊢ ℝ
⊆ ℝ* |
81 | 79, 80 | sstrdi 3929 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) ⊆
ℝ*) |
82 | | supxrcl 12978 |
. . . . . . 7
⊢ (ran
(𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) ⊆ ℝ* →
sup(ran (𝑛 ∈ ℕ
↦ (∫1‘(𝑔‘𝑛))), ℝ*, < ) ∈
ℝ*) |
83 | 81, 82 | syl 17 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, < ) ∈
ℝ*) |
84 | 38 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈
ℝ*) |
85 | 76 | adantll 710 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (∫1‘(𝑔‘𝑛)) ∈ ℝ) |
86 | 85 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (∫1‘(𝑔‘𝑛)) ∈
ℝ*) |
87 | | xrltle 12812 |
. . . . . . . . . . . . 13
⊢
((if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ* ∧
(∫1‘(𝑔‘𝑛)) ∈ ℝ*) →
(if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛)) → if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔‘𝑛)))) |
88 | 84, 86, 87 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛)) → if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔‘𝑛)))) |
89 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (∫1‘(𝑔‘𝑛)) = (∫1‘(𝑔‘𝑚))) |
90 | 89 | cbvmptv 5183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) = (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))) |
91 | 90 | rneqi 5835 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) = ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))) |
92 | 77 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) → (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))):ℕ⟶ℝ) |
93 | 92 | frnd 6592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) → ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) ⊆ ℝ) |
94 | 93, 80 | sstrdi 3929 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) → ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) ⊆
ℝ*) |
95 | 94 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) ⊆
ℝ*) |
96 | 91, 95 | eqsstrrid 3966 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))) ⊆
ℝ*) |
97 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → (∫1‘(𝑔‘𝑚)) = (∫1‘(𝑔‘𝑛))) |
98 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))) = (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))) |
99 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢
(∫1‘(𝑔‘𝑛)) ∈ V |
100 | 97, 98, 99 | fvmpt 6857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚)))‘𝑛) = (∫1‘(𝑔‘𝑛))) |
101 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢
(∫1‘(𝑔‘𝑚)) ∈ V |
102 | 101, 98 | fnmpti 6560 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))) Fn ℕ |
103 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))) Fn ℕ ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚)))) |
104 | 102, 103 | mpan 686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚)))) |
105 | 100, 104 | eqeltrrd 2840 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ →
(∫1‘(𝑔‘𝑛)) ∈ ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚)))) |
106 | 105 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (∫1‘(𝑔‘𝑛)) ∈ ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚)))) |
107 | | supxrub 12987 |
. . . . . . . . . . . . . 14
⊢ ((ran
(𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))) ⊆ ℝ* ∧
(∫1‘(𝑔‘𝑛)) ∈ ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚)))) → (∫1‘(𝑔‘𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
)) |
108 | 96, 106, 107 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (∫1‘(𝑔‘𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
)) |
109 | 91 | supeq1i 9136 |
. . . . . . . . . . . . . . 15
⊢ sup(ran
(𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, < ) = sup(ran
(𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
) |
110 | 95, 82 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, < ) ∈
ℝ*) |
111 | 109, 110 | eqeltrrid 2844 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) ∈
ℝ*) |
112 | | xrletr 12821 |
. . . . . . . . . . . . . 14
⊢
((if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ* ∧
(∫1‘(𝑔‘𝑛)) ∈ ℝ* ∧ sup(ran
(𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) ∈
ℝ*) → ((if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔‘𝑛)) ∧ (∫1‘(𝑔‘𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < )) →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
113 | 84, 86, 111, 112 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → ((if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔‘𝑛)) ∧ (∫1‘(𝑔‘𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < )) →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
114 | 108, 113 | mpan2d 690 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔‘𝑛)) → if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
115 | 88, 114 | syld 47 |
. . . . . . . . . . 11
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛)) → if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
116 | 115 | adantld 490 |
. . . . . . . . . 10
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))) → if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
117 | 116 | ralimdva 3102 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) → (∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))) → ∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
118 | 117 | impr 454 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → ∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
)) |
119 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑥 = sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) →
(if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
120 | 119 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑥 = sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) →
(∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
121 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑥 = sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) →
((∫2‘𝐹) ≤ 𝑥 ↔ (∫2‘𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
122 | 120, 121 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑥 = sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) →
((∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥) ↔ (∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) →
(∫2‘𝐹)
≤ sup(ran (𝑚 ∈
ℕ ↦ (∫1‘(𝑔‘𝑚))), ℝ*, <
)))) |
123 | | elxr 12781 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ*
↔ (𝑥 ∈ ℝ
∨ 𝑥 = +∞ ∨
𝑥 =
-∞)) |
124 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ (∫2‘𝐹) = +∞) → 𝑥 ∈
ℝ) |
125 | | arch 12160 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ →
∃𝑛 ∈ ℕ
𝑥 < 𝑛) |
126 | 124, 125 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ (∫2‘𝐹) = +∞) →
∃𝑛 ∈ ℕ
𝑥 < 𝑛) |
127 | 4 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ (∫2‘𝐹) = +∞) →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) = 𝑛) |
128 | 127 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ (∫2‘𝐹) = +∞) → (𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ 𝑥 < 𝑛)) |
129 | 128 | rexbidv 3225 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ (∫2‘𝐹) = +∞) →
(∃𝑛 ∈ ℕ
𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛)) |
130 | 126, 129 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ (∫2‘𝐹) = +∞) →
∃𝑛 ∈ ℕ
𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))) |
131 | 26 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → (∫2‘𝐹) ∈ ℝ) |
132 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → 𝑥 ∈
ℝ) |
133 | 131, 132 | resubcld 11333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → ((∫2‘𝐹) − 𝑥) ∈ ℝ) |
134 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → 𝑥 <
(∫2‘𝐹)) |
135 | 132, 131 | posdifd 11492 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → (𝑥 <
(∫2‘𝐹)
↔ 0 < ((∫2‘𝐹) − 𝑥))) |
136 | 134, 135 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → 0 < ((∫2‘𝐹) − 𝑥)) |
137 | | nnrecl 12161 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((∫2‘𝐹) − 𝑥) ∈ ℝ ∧ 0 <
((∫2‘𝐹) − 𝑥)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2‘𝐹) − 𝑥)) |
138 | 133, 136,
137 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → ∃𝑛
∈ ℕ (1 / 𝑛) <
((∫2‘𝐹) − 𝑥)) |
139 | 34 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) ∧ 𝑛 ∈
ℕ) → (1 / 𝑛)
∈ ℝ) |
140 | 131 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) ∧ 𝑛 ∈
ℕ) → (∫2‘𝐹) ∈ ℝ) |
141 | 132 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) ∧ 𝑛 ∈
ℕ) → 𝑥 ∈
ℝ) |
142 | | ltsub13 11386 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((1 /
𝑛) ∈ ℝ ∧
(∫2‘𝐹)
∈ ℝ ∧ 𝑥
∈ ℝ) → ((1 / 𝑛) < ((∫2‘𝐹) − 𝑥) ↔ 𝑥 < ((∫2‘𝐹) − (1 / 𝑛)))) |
143 | 139, 140,
141, 142 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) ∧ 𝑛 ∈
ℕ) → ((1 / 𝑛)
< ((∫2‘𝐹) − 𝑥) ↔ 𝑥 < ((∫2‘𝐹) − (1 / 𝑛)))) |
144 | 8 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) ∧ 𝑛 ∈
ℕ) → if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) = ((∫2‘𝐹) − (1 / 𝑛))) |
145 | 144 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) ∧ 𝑛 ∈
ℕ) → (𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ 𝑥 < ((∫2‘𝐹) − (1 / 𝑛)))) |
146 | 143, 145 | bitr4d 281 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) ∧ 𝑛 ∈
ℕ) → ((1 / 𝑛)
< ((∫2‘𝐹) − 𝑥) ↔ 𝑥 < if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
147 | 146 | rexbidva 3224 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → (∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2‘𝐹) − 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑥 < if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
148 | 138, 147 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) ∧ ¬
(∫2‘𝐹)
= +∞) → ∃𝑛
∈ ℕ 𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))) |
149 | 130, 148 | pm2.61dan 809 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∧ 𝑥 <
(∫2‘𝐹))) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))) |
150 | 149 | expr 456 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
→ (𝑥 <
(∫2‘𝐹)
→ ∃𝑛 ∈
ℕ 𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))))) |
151 | | rexr 10952 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
152 | | xrltnle 10973 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ*
∧ (∫2‘𝐹) ∈ ℝ*) → (𝑥 <
(∫2‘𝐹)
↔ ¬ (∫2‘𝐹) ≤ 𝑥)) |
153 | 151, 10, 152 | syl2anr 596 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
→ (𝑥 <
(∫2‘𝐹)
↔ ¬ (∫2‘𝐹) ≤ 𝑥)) |
154 | 151 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
∧ 𝑛 ∈ ℕ)
→ 𝑥 ∈
ℝ*) |
155 | 38 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
∧ 𝑛 ∈ ℕ)
→ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈
ℝ*) |
156 | | xrltnle 10973 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ*
∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ*) → (𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ¬
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥)) |
157 | 154, 155,
156 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
∧ 𝑛 ∈ ℕ)
→ (𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ¬
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥)) |
158 | 157 | rexbidva 3224 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
→ (∃𝑛 ∈
ℕ 𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ ¬
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥)) |
159 | | rexnal 3165 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑛 ∈
ℕ ¬ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ¬ ∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥) |
160 | 158, 159 | bitrdi 286 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
→ (∃𝑛 ∈
ℕ 𝑥 <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ¬ ∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥)) |
161 | 150, 153,
160 | 3imtr3d 292 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
→ (¬ (∫2‘𝐹) ≤ 𝑥 → ¬ ∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥)) |
162 | 161 | con4d 115 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈ ℝ)
→ (∀𝑛 ∈
ℕ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥)) |
163 | 10 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = +∞) →
(∫2‘𝐹)
∈ ℝ*) |
164 | | pnfge 12795 |
. . . . . . . . . . . . . . . 16
⊢
((∫2‘𝐹) ∈ ℝ* →
(∫2‘𝐹)
≤ +∞) |
165 | 163, 164 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = +∞) →
(∫2‘𝐹)
≤ +∞) |
166 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = +∞) →
𝑥 =
+∞) |
167 | 165, 166 | breqtrrd 5098 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = +∞) →
(∫2‘𝐹)
≤ 𝑥) |
168 | 167 | a1d 25 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = +∞) →
(∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥)) |
169 | | 1nn 11914 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ |
170 | 169 | ne0ii 4268 |
. . . . . . . . . . . . . . 15
⊢ ℕ
≠ ∅ |
171 | | r19.2z 4422 |
. . . . . . . . . . . . . . 15
⊢ ((ℕ
≠ ∅ ∧ ∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥) → ∃𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥) |
172 | 170, 171 | mpan 686 |
. . . . . . . . . . . . . 14
⊢
(∀𝑛 ∈
ℕ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → ∃𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥) |
173 | 37 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = -∞) ∧
𝑛 ∈ ℕ) →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ) |
174 | | mnflt 12788 |
. . . . . . . . . . . . . . . . . . 19
⊢
(if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ → -∞ <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛)))) |
175 | | rexr 10952 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ →
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈
ℝ*) |
176 | | xrltnle 10973 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((-∞ ∈ ℝ* ∧
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ*) →
(-∞ < if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ¬
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ -∞)) |
177 | 15, 175, 176 | sylancr 586 |
. . . . . . . . . . . . . . . . . . 19
⊢
(if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ → (-∞ <
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ↔ ¬
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ -∞)) |
178 | 174, 177 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢
(if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ∈ ℝ → ¬
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ -∞) |
179 | 173, 178 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = -∞) ∧
𝑛 ∈ ℕ) →
¬ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ -∞) |
180 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = -∞) ∧
𝑛 ∈ ℕ) →
𝑥 =
-∞) |
181 | 180 | breq2d 5082 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = -∞) ∧
𝑛 ∈ ℕ) →
(if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ -∞)) |
182 | 179, 181 | mtbird 324 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = -∞) ∧
𝑛 ∈ ℕ) →
¬ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥) |
183 | 182 | nrexdv 3197 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = -∞) →
¬ ∃𝑛 ∈
ℕ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥) |
184 | 183 | pm2.21d 121 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = -∞) →
(∃𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥)) |
185 | 172, 184 | syl5 34 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 = -∞) →
(∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥)) |
186 | 162, 168,
185 | 3jaodan 1428 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑥 ∈ ℝ
∨ 𝑥 = +∞ ∨
𝑥 = -∞)) →
(∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥)) |
187 | 123, 186 | sylan2b 593 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑥 ∈
ℝ*) → (∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥)) |
188 | 187 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∀𝑥 ∈
ℝ* (∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥)) |
189 | 188 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2‘𝐹) ≤ 𝑥)) |
190 | 109, 83 | eqeltrrid 2844 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) ∈
ℝ*) |
191 | 122, 189,
190 | rspcdva 3554 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (∀𝑛 ∈ ℕ
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, < ) →
(∫2‘𝐹)
≤ sup(ran (𝑚 ∈
ℕ ↦ (∫1‘(𝑔‘𝑚))), ℝ*, <
))) |
192 | 118, 191 | mpd 15 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (∫2‘𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦
(∫1‘(𝑔‘𝑚))), ℝ*, <
)) |
193 | 192, 109 | breqtrrdi 5112 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (∫2‘𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, <
)) |
194 | | itg2ub 24803 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔‘𝑛) ∈ dom ∫1
∧ (𝑔‘𝑛) ∘r ≤ 𝐹) →
(∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹)) |
195 | 194 | 3expia 1119 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔‘𝑛) ∈ dom ∫1)
→ ((𝑔‘𝑛) ∘r ≤ 𝐹 →
(∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹))) |
196 | 74, 195 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ 𝑛
∈ ℕ)) → ((𝑔‘𝑛) ∘r ≤ 𝐹 → (∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹))) |
197 | 196 | anassrs 467 |
. . . . . . . . . . . 12
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → ((𝑔‘𝑛) ∘r ≤ 𝐹 → (∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹))) |
198 | 197 | adantrd 491 |
. . . . . . . . . . 11
⊢ (((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) ∧ 𝑛
∈ ℕ) → (((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))) → (∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹))) |
199 | 198 | ralimdva 3102 |
. . . . . . . . . 10
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ 𝑔:ℕ⟶dom
∫1) → (∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))) → ∀𝑛 ∈ ℕ
(∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹))) |
200 | 199 | impr 454 |
. . . . . . . . 9
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → ∀𝑛 ∈ ℕ
(∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹)) |
201 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) = (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) |
202 | 89, 201, 101 | fvmpt 6857 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))‘𝑚) = (∫1‘(𝑔‘𝑚))) |
203 | 202 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))‘𝑚) ≤ (∫2‘𝐹) ↔
(∫1‘(𝑔‘𝑚)) ≤ (∫2‘𝐹))) |
204 | 203 | ralbiia 3089 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫1‘(𝑔‘𝑛)))‘𝑚) ≤ (∫2‘𝐹) ↔ ∀𝑚 ∈ ℕ
(∫1‘(𝑔‘𝑚)) ≤ (∫2‘𝐹)) |
205 | 89 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → ((∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹) ↔
(∫1‘(𝑔‘𝑚)) ≤ (∫2‘𝐹))) |
206 | 205 | cbvralvw 3372 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
ℕ (∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹) ↔ ∀𝑚 ∈ ℕ
(∫1‘(𝑔‘𝑚)) ≤ (∫2‘𝐹)) |
207 | 204, 206 | bitr4i 277 |
. . . . . . . . 9
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ (∫1‘(𝑔‘𝑛)))‘𝑚) ≤ (∫2‘𝐹) ↔ ∀𝑛 ∈ ℕ
(∫1‘(𝑔‘𝑛)) ≤ (∫2‘𝐹)) |
208 | 200, 207 | sylibr 233 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))‘𝑚) ≤ (∫2‘𝐹)) |
209 | | ffn 6584 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))):ℕ⟶ℝ → (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) Fn ℕ) |
210 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))‘𝑚) → (𝑧 ≤ (∫2‘𝐹) ↔ ((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))‘𝑚) ≤ (∫2‘𝐹))) |
211 | 210 | ralrn 6946 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))𝑧 ≤ (∫2‘𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))‘𝑚) ≤ (∫2‘𝐹))) |
212 | 78, 209, 211 | 3syl 18 |
. . . . . . . 8
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))𝑧 ≤ (∫2‘𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))‘𝑚) ≤ (∫2‘𝐹))) |
213 | 208, 212 | mpbird 256 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))𝑧 ≤ (∫2‘𝐹)) |
214 | | supxrleub 12989 |
. . . . . . . 8
⊢ ((ran
(𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))) ⊆ ℝ* ∧
(∫2‘𝐹)
∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, < ) ≤
(∫2‘𝐹)
↔ ∀𝑧 ∈ ran
(𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))𝑧 ≤ (∫2‘𝐹))) |
215 | 81, 73, 214 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, < ) ≤
(∫2‘𝐹)
↔ ∀𝑧 ∈ ran
(𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛)))𝑧 ≤ (∫2‘𝐹))) |
216 | 213, 215 | mpbird 256 |
. . . . . 6
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, < ) ≤
(∫2‘𝐹)) |
217 | 73, 83, 193, 216 | xrletrid 12818 |
. . . . 5
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (∫2‘𝐹) = sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, <
)) |
218 | 69, 72, 217 | 3jca 1126 |
. . . 4
⊢ ((𝐹:ℝ⟶(0[,]+∞)
∧ (𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛))))) → (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(𝑔‘𝑛) ∘r ≤ 𝐹 ∧ (∫2‘𝐹) = sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, <
))) |
219 | 218 | ex 412 |
. . 3
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ((𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
((𝑔‘𝑛) ∘r ≤ 𝐹 ∧
if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛)))) → (𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(𝑔‘𝑛) ∘r ≤ 𝐹 ∧ (∫2‘𝐹) = sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, <
)))) |
220 | 219 | eximdv 1921 |
. 2
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∃𝑔(𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔‘𝑛) ∘r ≤ 𝐹 ∧ if((∫2‘𝐹) = +∞, 𝑛, ((∫2‘𝐹) − (1 / 𝑛))) < (∫1‘(𝑔‘𝑛)))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(𝑔‘𝑛) ∘r ≤ 𝐹 ∧ (∫2‘𝐹) = sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, <
)))) |
221 | 68, 220 | mpd 15 |
1
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ ∃𝑔(𝑔:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ∘r ≤ 𝐹 ∧ (∫2‘𝐹) = sup(ran (𝑛 ∈ ℕ ↦
(∫1‘(𝑔‘𝑛))), ℝ*, <
))) |