MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2seq Structured version   Visualization version   GIF version

Theorem itg2seq 24026
Description: Definitional property of the 2 integral: for any function 𝐹 there is a countable sequence 𝑔 of simple functions less than 𝐹 whose integrals converge to the integral of 𝐹. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 24039, but unlike that theorem this one doesn't require 𝐹 to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.)
Assertion
Ref Expression
itg2seq (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Distinct variable group:   𝑔,𝑛,𝐹

Proof of Theorem itg2seq
Dummy variables 𝑓 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 11493 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
21ad2antlr 723 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 ∈ ℝ)
32ltpnfd 12366 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 < +∞)
4 iftrue 4387 . . . . . . . . . . 11 ((∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
54adantl 482 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
6 simpr 485 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → (∫2𝐹) = +∞)
73, 5, 63brtr4d 4994 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
8 iffalse 4390 . . . . . . . . . . 11 (¬ (∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
98adantl 482 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
10 itg2cl 24016 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
11 xrrebnd 12411 . . . . . . . . . . . . . . 15 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
1210, 11syl 17 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
13 itg2ge0 24019 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
14 mnflt0 12370 . . . . . . . . . . . . . . . . 17 -∞ < 0
15 mnfxr 10545 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
16 0xr 10534 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ*
17 xrltletr 12400 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
1815, 16, 10, 17mp3an12i 1457 . . . . . . . . . . . . . . . . 17 (𝐹:ℝ⟶(0[,]+∞) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
1914, 18mpani 692 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → (0 ≤ (∫2𝐹) → -∞ < (∫2𝐹)))
2013, 19mpd 15 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → -∞ < (∫2𝐹))
2120biantrurd 533 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
22 nltpnft 12407 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2310, 22syl 17 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2423con2bid 356 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ ¬ (∫2𝐹) = +∞))
2512, 21, 243bitr2rd 309 . . . . . . . . . . . . 13 (𝐹:ℝ⟶(0[,]+∞) → (¬ (∫2𝐹) = +∞ ↔ (∫2𝐹) ∈ ℝ))
2625biimpa 477 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
2726adantlr 711 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
28 nnrp 12250 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2928rpreccld 12291 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
3029ad2antlr 723 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ+)
3127, 30ltsubrpd 12313 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) < (∫2𝐹))
329, 31eqbrtrd 4984 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
337, 32pm2.61dan 809 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
34 nnrecre 11527 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
3534ad2antlr 723 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ)
3627, 35resubcld 10916 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) ∈ ℝ)
372, 36ifclda 4415 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
3837rexrd 10537 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
3910adantr 481 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ*)
40 xrltnle 10555 . . . . . . . . 9 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4138, 39, 40syl2anc 584 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4233, 41mpbid 233 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
43 itg2leub 24018 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4438, 43syldan 591 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4542, 44mtbid 325 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
46 rexanali 3229 . . . . . 6 (∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))) ↔ ¬ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4745, 46sylibr 235 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
48 itg1cl 23969 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
49 ltnle 10567 . . . . . . . 8 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ ∧ (∫1𝑓) ∈ ℝ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5037, 48, 49syl2an 595 . . . . . . 7 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5150anbi2d 628 . . . . . 6 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → ((𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ (𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5251rexbidva 3259 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5347, 52mpbird 258 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
5453ralrimiva 3149 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
55 ovex 7048 . . . . 5 (ℝ ↑𝑚 ℝ) ∈ V
56 i1ff 23960 . . . . . . 7 (𝑥 ∈ dom ∫1𝑥:ℝ⟶ℝ)
57 reex 10474 . . . . . . . 8 ℝ ∈ V
5857, 57elmap 8285 . . . . . . 7 (𝑥 ∈ (ℝ ↑𝑚 ℝ) ↔ 𝑥:ℝ⟶ℝ)
5956, 58sylibr 235 . . . . . 6 (𝑥 ∈ dom ∫1𝑥 ∈ (ℝ ↑𝑚 ℝ))
6059ssriv 3893 . . . . 5 dom ∫1 ⊆ (ℝ ↑𝑚 ℝ)
6155, 60ssexi 5117 . . . 4 dom ∫1 ∈ V
62 nnenom 13198 . . . 4 ℕ ≈ ω
63 breq1 4965 . . . . 5 (𝑓 = (𝑔𝑛) → (𝑓𝑟𝐹 ↔ (𝑔𝑛) ∘𝑟𝐹))
64 fveq2 6538 . . . . . 6 (𝑓 = (𝑔𝑛) → (∫1𝑓) = (∫1‘(𝑔𝑛)))
6564breq2d 4974 . . . . 5 (𝑓 = (𝑔𝑛) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))
6663, 65anbi12d 630 . . . 4 (𝑓 = (𝑔𝑛) → ((𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
6761, 62, 66axcc4 9707 . . 3 (∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
6854, 67syl 17 . 2 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
69 simprl 767 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → 𝑔:ℕ⟶dom ∫1)
70 simpl 483 . . . . . . 7 (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (𝑔𝑛) ∘𝑟𝐹)
7170ralimi 3127 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹)
7271ad2antll 725 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹)
7310adantr 481 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ∈ ℝ*)
74 ffvelrn 6714 . . . . . . . . . . . 12 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (𝑔𝑛) ∈ dom ∫1)
75 itg1cl 23969 . . . . . . . . . . . 12 ((𝑔𝑛) ∈ dom ∫1 → (∫1‘(𝑔𝑛)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . 11 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
7776fmpttd 6742 . . . . . . . . . 10 (𝑔:ℕ⟶dom ∫1 → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
7877ad2antrl 724 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
7978frnd 6389 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
80 ressxr 10531 . . . . . . . 8 ℝ ⊆ ℝ*
8179, 80syl6ss 3901 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
82 supxrcl 12558 . . . . . . 7 (ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
8381, 82syl 17 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
8438adantlr 711 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
8576adantll 710 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
8685rexrd 10537 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ*)
87 xrltle 12392 . . . . . . . . . . . . 13 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
8884, 86, 87syl2anc 584 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
89 2fveq3 6543 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (∫1‘(𝑔𝑛)) = (∫1‘(𝑔𝑚)))
9089cbvmptv 5061 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
9190rneqi 5689 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
9277adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
9392frnd 6389 . . . . . . . . . . . . . . . . 17 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
9493, 80syl6ss 3901 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
9594adantr 481 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
9691, 95syl5eqssr 3937 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ*)
97 2fveq3 6543 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (∫1‘(𝑔𝑚)) = (∫1‘(𝑔𝑛)))
98 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
99 fvex 6551 . . . . . . . . . . . . . . . . 17 (∫1‘(𝑔𝑛)) ∈ V
10097, 98, 99fvmpt 6635 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) = (∫1‘(𝑔𝑛)))
101 fvex 6551 . . . . . . . . . . . . . . . . . 18 (∫1‘(𝑔𝑚)) ∈ V
102101, 98fnmpti 6359 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ
103 fnfvelrn 6713 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
104102, 103mpan 686 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
105100, 104eqeltrrd 2884 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
106105adantl 482 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
107 supxrub 12567 . . . . . . . . . . . . . 14 ((ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
10896, 106, 107syl2anc 584 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
10991supeq1i 8757 . . . . . . . . . . . . . . 15 sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )
11095, 82syl 17 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
111109, 110syl5eqelr 2888 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
112 xrletr 12401 . . . . . . . . . . . . . 14 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ* ∧ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
11384, 86, 111, 112syl3anc 1364 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
114108, 113mpan2d 690 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
11588, 114syld 47 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
116115adantld 491 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
117116ralimdva 3144 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
118117impr 455 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
119 breq2 4966 . . . . . . . . . . 11 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
120119ralbidv 3164 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
121 breq2 4966 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∫2𝐹) ≤ 𝑥 ↔ (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
122120, 121imbi12d 346 . . . . . . . . 9 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥) ↔ (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))))
123 elxr 12361 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
124 simplrl 773 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
125 arch 11742 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
126124, 125syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
1274adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
128127breq2d 4974 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < 𝑛))
129128rexbidv 3260 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛))
130126, 129mpbird 258 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
13126adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
132 simplrl 773 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
133131, 132resubcld 10916 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − 𝑥) ∈ ℝ)
134 simplrr 774 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 < (∫2𝐹))
135132, 131posdifd 11075 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (𝑥 < (∫2𝐹) ↔ 0 < ((∫2𝐹) − 𝑥)))
136134, 135mpbid 233 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 0 < ((∫2𝐹) − 𝑥))
137 nnrecl 11743 . . . . . . . . . . . . . . . . . . 19 ((((∫2𝐹) − 𝑥) ∈ ℝ ∧ 0 < ((∫2𝐹) − 𝑥)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
138133, 136, 137syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
13934adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
140131adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ)
141132adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
142 ltsub13 10969 . . . . . . . . . . . . . . . . . . . . 21 (((1 / 𝑛) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
143139, 140, 141, 142syl3anc 1364 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
1448ad2antlr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
145144breq2d 4974 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
146143, 145bitr4d 283 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
147146rexbidva 3259 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
148138, 147mpbid 233 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
149130, 148pm2.61dan 809 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
150149expr 457 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
151 rexr 10533 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
152 xrltnle 10555 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
153151, 10, 152syl2anr 596 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
154151ad2antlr 723 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ*)
15538adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
156 xrltnle 10555 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
157154, 155, 156syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
158157rexbidva 3259 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
159 rexnal 3202 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
160158, 159syl6bb 288 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
161150, 153, 1603imtr3d 294 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (¬ (∫2𝐹) ≤ 𝑥 → ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
162161con4d 115 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
16310adantr 481 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ∈ ℝ*)
164 pnfge 12375 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → (∫2𝐹) ≤ +∞)
165163, 164syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ +∞)
166 simpr 485 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → 𝑥 = +∞)
167165, 166breqtrrd 4990 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ 𝑥)
168167a1d 25 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
169 1nn 11497 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
170169ne0ii 4223 . . . . . . . . . . . . . . 15 ℕ ≠ ∅
171 r19.2z 4354 . . . . . . . . . . . . . . 15 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥) → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
172170, 171mpan 686 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
17337adantlr 711 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
174 mnflt 12368 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → -∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
175 rexr 10533 . . . . . . . . . . . . . . . . . . . 20 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
176 xrltnle 10555 . . . . . . . . . . . . . . . . . . . 20 ((-∞ ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
17715, 175, 176sylancr 587 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
178174, 177mpbid 233 . . . . . . . . . . . . . . . . . 18 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
179173, 178syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
180 simplr 765 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → 𝑥 = -∞)
181180breq2d 4974 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
182179, 181mtbird 326 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
183182nrexdv 3233 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → ¬ ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
184183pm2.21d 121 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
185172, 184syl5 34 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
186162, 168, 1853jaodan 1423 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
187123, 186sylan2b 593 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ*) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
188187ralrimiva 3149 . . . . . . . . . 10 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
189188adantr 481 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
190109, 83syl5eqelr 2888 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
191122, 189, 190rspcdva 3565 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
192118, 191mpd 15 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
193192, 109syl6breqr 5004 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
194 itg2ub 24017 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1 ∧ (𝑔𝑛) ∘𝑟𝐹) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
1951943expia 1114 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
19674, 195sylan2 592 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ)) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
197196anassrs 468 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
198197adantrd 492 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
199198ralimdva 3144 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
200199impr 455 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
201 eqid 2795 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))
20289, 201, 101fvmpt 6635 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) = (∫1‘(𝑔𝑚)))
203202breq1d 4972 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
204203ralbiia 3131 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
20589breq1d 4972 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
206205cbvralv 3403 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
207204, 206bitr4i 279 . . . . . . . . 9 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
208200, 207sylibr 235 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹))
209 ffn 6382 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ)
210 breq1 4965 . . . . . . . . . 10 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) → (𝑧 ≤ (∫2𝐹) ↔ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
211210ralrn 6719 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
21278, 209, 2113syl 18 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
213208, 212mpbird 258 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹))
214 supxrleub 12569 . . . . . . . 8 ((ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
21581, 73, 214syl2anc 584 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
216213, 215mpbird 258 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))
21773, 83, 193, 216xrletrid 12398 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
21869, 72, 2173jca 1121 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
219218ex 413 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
220219eximdv 1895 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
22168, 220mpd 15 1 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3o 1079  w3a 1080   = wceq 1522  wex 1761  wcel 2081  wne 2984  wral 3105  wrex 3106  wss 3859  c0 4211  ifcif 4381   class class class wbr 4962  cmpt 5041  dom cdm 5443  ran crn 5444   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  𝑟 cofr 7266  𝑚 cmap 8256  supcsup 8750  cr 10382  0cc0 10383  1c1 10384  +∞cpnf 10518  -∞cmnf 10519  *cxr 10520   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  cn 11486  +crp 12239  [,]cicc 12591  1citg1 23899  2citg2 23900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cc 9703  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-ofr 7268  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xadd 12358  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-xmet 20220  df-met 20221  df-ovol 23748  df-vol 23749  df-mbf 23903  df-itg1 23904  df-itg2 23905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator