MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2seq Structured version   Visualization version   GIF version

Theorem itg2seq 24346
Description: Definitional property of the 2 integral: for any function 𝐹 there is a countable sequence 𝑔 of simple functions less than 𝐹 whose integrals converge to the integral of 𝐹. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 24359, but unlike that theorem this one doesn't require 𝐹 to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.)
Assertion
Ref Expression
itg2seq (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Distinct variable group:   𝑔,𝑛,𝐹

Proof of Theorem itg2seq
Dummy variables 𝑓 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 11632 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
21ad2antlr 726 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 ∈ ℝ)
32ltpnfd 12504 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 < +∞)
4 iftrue 4431 . . . . . . . . . . 11 ((∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
54adantl 485 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
6 simpr 488 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → (∫2𝐹) = +∞)
73, 5, 63brtr4d 5062 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
8 iffalse 4434 . . . . . . . . . . 11 (¬ (∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
98adantl 485 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
10 itg2cl 24336 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
11 xrrebnd 12549 . . . . . . . . . . . . . . 15 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
1210, 11syl 17 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
13 itg2ge0 24339 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
14 mnflt0 12508 . . . . . . . . . . . . . . . . 17 -∞ < 0
15 mnfxr 10687 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
16 0xr 10677 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ*
17 xrltletr 12538 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
1815, 16, 10, 17mp3an12i 1462 . . . . . . . . . . . . . . . . 17 (𝐹:ℝ⟶(0[,]+∞) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
1914, 18mpani 695 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → (0 ≤ (∫2𝐹) → -∞ < (∫2𝐹)))
2013, 19mpd 15 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → -∞ < (∫2𝐹))
2120biantrurd 536 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
22 nltpnft 12545 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2310, 22syl 17 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2423con2bid 358 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ ¬ (∫2𝐹) = +∞))
2512, 21, 243bitr2rd 311 . . . . . . . . . . . . 13 (𝐹:ℝ⟶(0[,]+∞) → (¬ (∫2𝐹) = +∞ ↔ (∫2𝐹) ∈ ℝ))
2625biimpa 480 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
2726adantlr 714 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
28 nnrp 12388 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2928rpreccld 12429 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
3029ad2antlr 726 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ+)
3127, 30ltsubrpd 12451 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) < (∫2𝐹))
329, 31eqbrtrd 5052 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
337, 32pm2.61dan 812 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
34 nnrecre 11667 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
3534ad2antlr 726 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ)
3627, 35resubcld 11057 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) ∈ ℝ)
372, 36ifclda 4459 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
3837rexrd 10680 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
3910adantr 484 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ*)
40 xrltnle 10697 . . . . . . . . 9 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4138, 39, 40syl2anc 587 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4233, 41mpbid 235 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
43 itg2leub 24338 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4438, 43syldan 594 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4542, 44mtbid 327 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
46 rexanali 3224 . . . . . 6 (∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))) ↔ ¬ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4745, 46sylibr 237 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
48 itg1cl 24289 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
49 ltnle 10709 . . . . . . . 8 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ ∧ (∫1𝑓) ∈ ℝ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5037, 48, 49syl2an 598 . . . . . . 7 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5150anbi2d 631 . . . . . 6 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → ((𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ (𝑓r𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5251rexbidva 3255 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5347, 52mpbird 260 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
5453ralrimiva 3149 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
55 ovex 7168 . . . . 5 (ℝ ↑m ℝ) ∈ V
56 i1ff 24280 . . . . . . 7 (𝑥 ∈ dom ∫1𝑥:ℝ⟶ℝ)
57 reex 10617 . . . . . . . 8 ℝ ∈ V
5857, 57elmap 8418 . . . . . . 7 (𝑥 ∈ (ℝ ↑m ℝ) ↔ 𝑥:ℝ⟶ℝ)
5956, 58sylibr 237 . . . . . 6 (𝑥 ∈ dom ∫1𝑥 ∈ (ℝ ↑m ℝ))
6059ssriv 3919 . . . . 5 dom ∫1 ⊆ (ℝ ↑m ℝ)
6155, 60ssexi 5190 . . . 4 dom ∫1 ∈ V
62 nnenom 13343 . . . 4 ℕ ≈ ω
63 breq1 5033 . . . . 5 (𝑓 = (𝑔𝑛) → (𝑓r𝐹 ↔ (𝑔𝑛) ∘r𝐹))
64 fveq2 6645 . . . . . 6 (𝑓 = (𝑔𝑛) → (∫1𝑓) = (∫1‘(𝑔𝑛)))
6564breq2d 5042 . . . . 5 (𝑓 = (𝑔𝑛) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))
6663, 65anbi12d 633 . . . 4 (𝑓 = (𝑔𝑛) → ((𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
6761, 62, 66axcc4 9850 . . 3 (∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
6854, 67syl 17 . 2 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
69 simprl 770 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → 𝑔:ℕ⟶dom ∫1)
70 simpl 486 . . . . . . 7 (((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (𝑔𝑛) ∘r𝐹)
7170ralimi 3128 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹)
7271ad2antll 728 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹)
7310adantr 484 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ∈ ℝ*)
74 ffvelrn 6826 . . . . . . . . . . . 12 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (𝑔𝑛) ∈ dom ∫1)
75 itg1cl 24289 . . . . . . . . . . . 12 ((𝑔𝑛) ∈ dom ∫1 → (∫1‘(𝑔𝑛)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . 11 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
7776fmpttd 6856 . . . . . . . . . 10 (𝑔:ℕ⟶dom ∫1 → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
7877ad2antrl 727 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
7978frnd 6494 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
80 ressxr 10674 . . . . . . . 8 ℝ ⊆ ℝ*
8179, 80sstrdi 3927 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
82 supxrcl 12696 . . . . . . 7 (ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
8381, 82syl 17 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
8438adantlr 714 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
8576adantll 713 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
8685rexrd 10680 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ*)
87 xrltle 12530 . . . . . . . . . . . . 13 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
8884, 86, 87syl2anc 587 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
89 2fveq3 6650 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (∫1‘(𝑔𝑛)) = (∫1‘(𝑔𝑚)))
9089cbvmptv 5133 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
9190rneqi 5771 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
9277adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
9392frnd 6494 . . . . . . . . . . . . . . . . 17 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
9493, 80sstrdi 3927 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
9594adantr 484 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
9691, 95eqsstrrid 3964 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ*)
97 2fveq3 6650 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (∫1‘(𝑔𝑚)) = (∫1‘(𝑔𝑛)))
98 eqid 2798 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
99 fvex 6658 . . . . . . . . . . . . . . . . 17 (∫1‘(𝑔𝑛)) ∈ V
10097, 98, 99fvmpt 6745 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) = (∫1‘(𝑔𝑛)))
101 fvex 6658 . . . . . . . . . . . . . . . . . 18 (∫1‘(𝑔𝑚)) ∈ V
102101, 98fnmpti 6463 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ
103 fnfvelrn 6825 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
104102, 103mpan 689 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
105100, 104eqeltrrd 2891 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
106105adantl 485 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
107 supxrub 12705 . . . . . . . . . . . . . 14 ((ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
10896, 106, 107syl2anc 587 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
10991supeq1i 8895 . . . . . . . . . . . . . . 15 sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )
11095, 82syl 17 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
111109, 110eqeltrrid 2895 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
112 xrletr 12539 . . . . . . . . . . . . . 14 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ* ∧ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
11384, 86, 111, 112syl3anc 1368 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
114108, 113mpan2d 693 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
11588, 114syld 47 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
116115adantld 494 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
117116ralimdva 3144 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
118117impr 458 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
119 breq2 5034 . . . . . . . . . . 11 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
120119ralbidv 3162 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
121 breq2 5034 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∫2𝐹) ≤ 𝑥 ↔ (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
122120, 121imbi12d 348 . . . . . . . . 9 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥) ↔ (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))))
123 elxr 12499 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
124 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
125 arch 11882 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
126124, 125syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
1274adantl 485 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
128127breq2d 5042 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < 𝑛))
129128rexbidv 3256 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛))
130126, 129mpbird 260 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
13126adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
132 simplrl 776 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
133131, 132resubcld 11057 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − 𝑥) ∈ ℝ)
134 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 < (∫2𝐹))
135132, 131posdifd 11216 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (𝑥 < (∫2𝐹) ↔ 0 < ((∫2𝐹) − 𝑥)))
136134, 135mpbid 235 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 0 < ((∫2𝐹) − 𝑥))
137 nnrecl 11883 . . . . . . . . . . . . . . . . . . 19 ((((∫2𝐹) − 𝑥) ∈ ℝ ∧ 0 < ((∫2𝐹) − 𝑥)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
138133, 136, 137syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
13934adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
140131adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ)
141132adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
142 ltsub13 11110 . . . . . . . . . . . . . . . . . . . . 21 (((1 / 𝑛) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
143139, 140, 141, 142syl3anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
1448ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
145144breq2d 5042 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
146143, 145bitr4d 285 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
147146rexbidva 3255 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
148138, 147mpbid 235 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
149130, 148pm2.61dan 812 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
150149expr 460 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
151 rexr 10676 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
152 xrltnle 10697 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
153151, 10, 152syl2anr 599 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
154151ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ*)
15538adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
156 xrltnle 10697 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
157154, 155, 156syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
158157rexbidva 3255 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
159 rexnal 3201 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
160158, 159syl6bb 290 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
161150, 153, 1603imtr3d 296 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (¬ (∫2𝐹) ≤ 𝑥 → ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
162161con4d 115 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
16310adantr 484 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ∈ ℝ*)
164 pnfge 12513 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → (∫2𝐹) ≤ +∞)
165163, 164syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ +∞)
166 simpr 488 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → 𝑥 = +∞)
167165, 166breqtrrd 5058 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ 𝑥)
168167a1d 25 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
169 1nn 11636 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
170169ne0ii 4253 . . . . . . . . . . . . . . 15 ℕ ≠ ∅
171 r19.2z 4398 . . . . . . . . . . . . . . 15 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥) → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
172170, 171mpan 689 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
17337adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
174 mnflt 12506 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → -∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
175 rexr 10676 . . . . . . . . . . . . . . . . . . . 20 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
176 xrltnle 10697 . . . . . . . . . . . . . . . . . . . 20 ((-∞ ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
17715, 175, 176sylancr 590 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
178174, 177mpbid 235 . . . . . . . . . . . . . . . . . 18 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
179173, 178syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
180 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → 𝑥 = -∞)
181180breq2d 5042 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
182179, 181mtbird 328 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
183182nrexdv 3229 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → ¬ ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
184183pm2.21d 121 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
185172, 184syl5 34 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
186162, 168, 1853jaodan 1427 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
187123, 186sylan2b 596 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ*) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
188187ralrimiva 3149 . . . . . . . . . 10 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
189188adantr 484 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
190109, 83eqeltrrid 2895 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
191122, 189, 190rspcdva 3573 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
192118, 191mpd 15 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
193192, 109breqtrrdi 5072 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
194 itg2ub 24337 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1 ∧ (𝑔𝑛) ∘r𝐹) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
1951943expia 1118 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1) → ((𝑔𝑛) ∘r𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
19674, 195sylan2 595 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ)) → ((𝑔𝑛) ∘r𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
197196anassrs 471 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ∘r𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
198197adantrd 495 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
199198ralimdva 3144 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
200199impr 458 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
201 eqid 2798 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))
20289, 201, 101fvmpt 6745 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) = (∫1‘(𝑔𝑚)))
203202breq1d 5040 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
204203ralbiia 3132 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
20589breq1d 5040 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
206205cbvralvw 3396 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
207204, 206bitr4i 281 . . . . . . . . 9 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
208200, 207sylibr 237 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹))
209 ffn 6487 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ)
210 breq1 5033 . . . . . . . . . 10 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) → (𝑧 ≤ (∫2𝐹) ↔ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
211210ralrn 6831 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
21278, 209, 2113syl 18 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
213208, 212mpbird 260 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹))
214 supxrleub 12707 . . . . . . . 8 ((ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
21581, 73, 214syl2anc 587 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
216213, 215mpbird 260 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))
21773, 83, 193, 216xrletrid 12536 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
21869, 72, 2173jca 1125 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
219218ex 416 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
220219eximdv 1918 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
22168, 220mpd 15 1 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3o 1083  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  wss 3881  c0 4243  ifcif 4425   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  r cofr 7388  m cmap 8389  supcsup 8888  cr 10525  0cc0 10526  1c1 10527  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  +crp 12377  [,]cicc 12729  1citg1 24219  2citg2 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20084  df-met 20085  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator