MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2seq Structured version   Visualization version   GIF version

Theorem itg2seq 25797
Description: Definitional property of the 2 integral: for any function 𝐹 there is a countable sequence 𝑔 of simple functions less than 𝐹 whose integrals converge to the integral of 𝐹. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 25810, but unlike that theorem this one doesn't require 𝐹 to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.)
Assertion
Ref Expression
itg2seq (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Distinct variable group:   𝑔,𝑛,𝐹

Proof of Theorem itg2seq
Dummy variables 𝑓 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 12300 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
21ad2antlr 726 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 ∈ ℝ)
32ltpnfd 13184 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 < +∞)
4 iftrue 4554 . . . . . . . . . . 11 ((∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
54adantl 481 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
6 simpr 484 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → (∫2𝐹) = +∞)
73, 5, 63brtr4d 5198 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
8 iffalse 4557 . . . . . . . . . . 11 (¬ (∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
98adantl 481 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
10 itg2cl 25787 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
11 xrrebnd 13230 . . . . . . . . . . . . . . 15 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
1210, 11syl 17 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
13 itg2ge0 25790 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
14 mnflt0 13188 . . . . . . . . . . . . . . . . 17 -∞ < 0
15 mnfxr 11347 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
16 0xr 11337 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ*
17 xrltletr 13219 . . . . . . . . . . . . . . . . . 18 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
1815, 16, 10, 17mp3an12i 1465 . . . . . . . . . . . . . . . . 17 (𝐹:ℝ⟶(0[,]+∞) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
1914, 18mpani 695 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → (0 ≤ (∫2𝐹) → -∞ < (∫2𝐹)))
2013, 19mpd 15 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → -∞ < (∫2𝐹))
2120biantrurd 532 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
22 nltpnft 13226 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2310, 22syl 17 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2423con2bid 354 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ ¬ (∫2𝐹) = +∞))
2512, 21, 243bitr2rd 308 . . . . . . . . . . . . 13 (𝐹:ℝ⟶(0[,]+∞) → (¬ (∫2𝐹) = +∞ ↔ (∫2𝐹) ∈ ℝ))
2625biimpa 476 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
2726adantlr 714 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
28 nnrp 13068 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2928rpreccld 13109 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
3029ad2antlr 726 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ+)
3127, 30ltsubrpd 13131 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) < (∫2𝐹))
329, 31eqbrtrd 5188 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
337, 32pm2.61dan 812 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
34 nnrecre 12335 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
3534ad2antlr 726 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ)
3627, 35resubcld 11718 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) ∈ ℝ)
372, 36ifclda 4583 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
3837rexrd 11340 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
3910adantr 480 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ*)
40 xrltnle 11357 . . . . . . . . 9 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4138, 39, 40syl2anc 583 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4233, 41mpbid 232 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
43 itg2leub 25789 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4438, 43syldan 590 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4542, 44mtbid 324 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
46 rexanali 3108 . . . . . 6 (∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))) ↔ ¬ ∀𝑓 ∈ dom ∫1(𝑓r𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4745, 46sylibr 234 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
48 itg1cl 25739 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
49 ltnle 11369 . . . . . . . 8 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ ∧ (∫1𝑓) ∈ ℝ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5037, 48, 49syl2an 595 . . . . . . 7 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5150anbi2d 629 . . . . . 6 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → ((𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ (𝑓r𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5251rexbidva 3183 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5347, 52mpbird 257 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
5453ralrimiva 3152 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
55 ovex 7481 . . . . 5 (ℝ ↑m ℝ) ∈ V
56 i1ff 25730 . . . . . . 7 (𝑥 ∈ dom ∫1𝑥:ℝ⟶ℝ)
57 reex 11275 . . . . . . . 8 ℝ ∈ V
5857, 57elmap 8929 . . . . . . 7 (𝑥 ∈ (ℝ ↑m ℝ) ↔ 𝑥:ℝ⟶ℝ)
5956, 58sylibr 234 . . . . . 6 (𝑥 ∈ dom ∫1𝑥 ∈ (ℝ ↑m ℝ))
6059ssriv 4012 . . . . 5 dom ∫1 ⊆ (ℝ ↑m ℝ)
6155, 60ssexi 5340 . . . 4 dom ∫1 ∈ V
62 nnenom 14031 . . . 4 ℕ ≈ ω
63 breq1 5169 . . . . 5 (𝑓 = (𝑔𝑛) → (𝑓r𝐹 ↔ (𝑔𝑛) ∘r𝐹))
64 fveq2 6920 . . . . . 6 (𝑓 = (𝑔𝑛) → (∫1𝑓) = (∫1‘(𝑔𝑛)))
6564breq2d 5178 . . . . 5 (𝑓 = (𝑔𝑛) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))
6663, 65anbi12d 631 . . . 4 (𝑓 = (𝑔𝑛) → ((𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
6761, 62, 66axcc4 10508 . . 3 (∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
6854, 67syl 17 . 2 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
69 simprl 770 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → 𝑔:ℕ⟶dom ∫1)
70 simpl 482 . . . . . . 7 (((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (𝑔𝑛) ∘r𝐹)
7170ralimi 3089 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹)
7271ad2antll 728 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹)
7310adantr 480 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ∈ ℝ*)
74 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (𝑔𝑛) ∈ dom ∫1)
75 itg1cl 25739 . . . . . . . . . . . 12 ((𝑔𝑛) ∈ dom ∫1 → (∫1‘(𝑔𝑛)) ∈ ℝ)
7674, 75syl 17 . . . . . . . . . . 11 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
7776fmpttd 7149 . . . . . . . . . 10 (𝑔:ℕ⟶dom ∫1 → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
7877ad2antrl 727 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
7978frnd 6755 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
80 ressxr 11334 . . . . . . . 8 ℝ ⊆ ℝ*
8179, 80sstrdi 4021 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
82 supxrcl 13377 . . . . . . 7 (ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
8381, 82syl 17 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
8438adantlr 714 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
8576adantll 713 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
8685rexrd 11340 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ*)
87 xrltle 13211 . . . . . . . . . . . . 13 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
8884, 86, 87syl2anc 583 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
89 2fveq3 6925 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (∫1‘(𝑔𝑛)) = (∫1‘(𝑔𝑚)))
9089cbvmptv 5279 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
9190rneqi 5962 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
9277adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
9392frnd 6755 . . . . . . . . . . . . . . . . 17 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
9493, 80sstrdi 4021 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
9594adantr 480 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
9691, 95eqsstrrid 4058 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ*)
97 2fveq3 6925 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (∫1‘(𝑔𝑚)) = (∫1‘(𝑔𝑛)))
98 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
99 fvex 6933 . . . . . . . . . . . . . . . . 17 (∫1‘(𝑔𝑛)) ∈ V
10097, 98, 99fvmpt 7029 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) = (∫1‘(𝑔𝑛)))
101 fvex 6933 . . . . . . . . . . . . . . . . . 18 (∫1‘(𝑔𝑚)) ∈ V
102101, 98fnmpti 6723 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ
103 fnfvelrn 7114 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
104102, 103mpan 689 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
105100, 104eqeltrrd 2845 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
106105adantl 481 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
107 supxrub 13386 . . . . . . . . . . . . . 14 ((ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
10896, 106, 107syl2anc 583 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
10991supeq1i 9516 . . . . . . . . . . . . . . 15 sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )
11095, 82syl 17 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
111109, 110eqeltrrid 2849 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
112 xrletr 13220 . . . . . . . . . . . . . 14 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ* ∧ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
11384, 86, 111, 112syl3anc 1371 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
114108, 113mpan2d 693 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
11588, 114syld 47 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
116115adantld 490 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
117116ralimdva 3173 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
118117impr 454 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
119 breq2 5170 . . . . . . . . . . 11 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
120119ralbidv 3184 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
121 breq2 5170 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∫2𝐹) ≤ 𝑥 ↔ (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
122120, 121imbi12d 344 . . . . . . . . 9 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥) ↔ (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))))
123 elxr 13179 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
124 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
125 arch 12550 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
126124, 125syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
1274adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
128127breq2d 5178 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < 𝑛))
129128rexbidv 3185 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛))
130126, 129mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
13126adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
132 simplrl 776 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
133131, 132resubcld 11718 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − 𝑥) ∈ ℝ)
134 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 < (∫2𝐹))
135132, 131posdifd 11877 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (𝑥 < (∫2𝐹) ↔ 0 < ((∫2𝐹) − 𝑥)))
136134, 135mpbid 232 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 0 < ((∫2𝐹) − 𝑥))
137 nnrecl 12551 . . . . . . . . . . . . . . . . . . 19 ((((∫2𝐹) − 𝑥) ∈ ℝ ∧ 0 < ((∫2𝐹) − 𝑥)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
138133, 136, 137syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
13934adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
140131adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ)
141132adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
142 ltsub13 11771 . . . . . . . . . . . . . . . . . . . . 21 (((1 / 𝑛) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
143139, 140, 141, 142syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
1448ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
145144breq2d 5178 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
146143, 145bitr4d 282 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
147146rexbidva 3183 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
148138, 147mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
149130, 148pm2.61dan 812 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
150149expr 456 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
151 rexr 11336 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
152 xrltnle 11357 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
153151, 10, 152syl2anr 596 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
154151ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ*)
15538adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
156 xrltnle 11357 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
157154, 155, 156syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
158157rexbidva 3183 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
159 rexnal 3106 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
160158, 159bitrdi 287 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
161150, 153, 1603imtr3d 293 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (¬ (∫2𝐹) ≤ 𝑥 → ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
162161con4d 115 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
16310adantr 480 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ∈ ℝ*)
164 pnfge 13193 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → (∫2𝐹) ≤ +∞)
165163, 164syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ +∞)
166 simpr 484 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → 𝑥 = +∞)
167165, 166breqtrrd 5194 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ 𝑥)
168167a1d 25 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
169 1nn 12304 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
170169ne0ii 4367 . . . . . . . . . . . . . . 15 ℕ ≠ ∅
171 r19.2z 4518 . . . . . . . . . . . . . . 15 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥) → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
172170, 171mpan 689 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
17337adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
174 mnflt 13186 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → -∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
175 rexr 11336 . . . . . . . . . . . . . . . . . . . 20 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
176 xrltnle 11357 . . . . . . . . . . . . . . . . . . . 20 ((-∞ ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
17715, 175, 176sylancr 586 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
178174, 177mpbid 232 . . . . . . . . . . . . . . . . . 18 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
179173, 178syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
180 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → 𝑥 = -∞)
181180breq2d 5178 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
182179, 181mtbird 325 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
183182nrexdv 3155 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → ¬ ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
184183pm2.21d 121 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
185172, 184syl5 34 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
186162, 168, 1853jaodan 1431 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
187123, 186sylan2b 593 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ*) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
188187ralrimiva 3152 . . . . . . . . . 10 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
189188adantr 480 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
190109, 83eqeltrrid 2849 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
191122, 189, 190rspcdva 3636 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
192118, 191mpd 15 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
193192, 109breqtrrdi 5208 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
194 itg2ub 25788 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1 ∧ (𝑔𝑛) ∘r𝐹) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
1951943expia 1121 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1) → ((𝑔𝑛) ∘r𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
19674, 195sylan2 592 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ)) → ((𝑔𝑛) ∘r𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
197196anassrs 467 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ∘r𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
198197adantrd 491 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
199198ralimdva 3173 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
200199impr 454 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
201 eqid 2740 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))
20289, 201, 101fvmpt 7029 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) = (∫1‘(𝑔𝑚)))
203202breq1d 5176 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
204203ralbiia 3097 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
20589breq1d 5176 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
206205cbvralvw 3243 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
207204, 206bitr4i 278 . . . . . . . . 9 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
208200, 207sylibr 234 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹))
209 ffn 6747 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ)
210 breq1 5169 . . . . . . . . . 10 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) → (𝑧 ≤ (∫2𝐹) ↔ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
211210ralrn 7122 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
21278, 209, 2113syl 18 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
213208, 212mpbird 257 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹))
214 supxrleub 13388 . . . . . . . 8 ((ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
21581, 73, 214syl2anc 583 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
216213, 215mpbird 257 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))
21773, 83, 193, 216xrletrid 13217 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
21869, 72, 2173jca 1128 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
219218ex 412 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
220219eximdv 1916 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘r𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
22168, 220mpd 15 1 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘r𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  r cofr 7713  m cmap 8884  supcsup 9509  cr 11183  0cc0 11184  1c1 11185  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  +crp 13057  [,]cicc 13410  1citg1 25669  2citg2 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator