MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf2d Structured version   Visualization version   GIF version

Theorem ismbf2d 24785
Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf2d.1 (𝜑𝐹:𝐴⟶ℝ)
ismbf2d.2 (𝜑𝐴 ∈ dom vol)
ismbf2d.3 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
ismbf2d.4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
Assertion
Ref Expression
ismbf2d (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbf2d
StepHypRef Expression
1 ismbf2d.1 . 2 (𝜑𝐹:𝐴⟶ℝ)
2 elxr 12834 . . 3 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
3 ismbf2d.3 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
4 oveq1 7275 . . . . . . . 8 (𝑥 = +∞ → (𝑥(,)+∞) = (+∞(,)+∞))
5 iooid 13089 . . . . . . . 8 (+∞(,)+∞) = ∅
64, 5eqtrdi 2795 . . . . . . 7 (𝑥 = +∞ → (𝑥(,)+∞) = ∅)
76imaeq2d 5966 . . . . . 6 (𝑥 = +∞ → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ∅))
8 ima0 5982 . . . . . . 7 (𝐹 “ ∅) = ∅
9 0mbl 24684 . . . . . . 7 ∅ ∈ dom vol
108, 9eqeltri 2836 . . . . . 6 (𝐹 “ ∅) ∈ dom vol
117, 10eqeltrdi 2848 . . . . 5 (𝑥 = +∞ → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
1211adantl 481 . . . 4 ((𝜑𝑥 = +∞) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
13 fimacnv 6618 . . . . . . . 8 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
141, 13syl 17 . . . . . . 7 (𝜑 → (𝐹 “ ℝ) = 𝐴)
15 ismbf2d.2 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
1614, 15eqeltrd 2840 . . . . . 6 (𝜑 → (𝐹 “ ℝ) ∈ dom vol)
17 oveq1 7275 . . . . . . . . 9 (𝑥 = -∞ → (𝑥(,)+∞) = (-∞(,)+∞))
18 ioomax 13136 . . . . . . . . 9 (-∞(,)+∞) = ℝ
1917, 18eqtrdi 2795 . . . . . . . 8 (𝑥 = -∞ → (𝑥(,)+∞) = ℝ)
2019imaeq2d 5966 . . . . . . 7 (𝑥 = -∞ → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ℝ))
2120eleq1d 2824 . . . . . 6 (𝑥 = -∞ → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
2216, 21syl5ibrcom 246 . . . . 5 (𝜑 → (𝑥 = -∞ → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol))
2322imp 406 . . . 4 ((𝜑𝑥 = -∞) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
243, 12, 233jaodan 1428 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
252, 24sylan2b 593 . 2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
26 ismbf2d.4 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
27 oveq2 7276 . . . . . . . . 9 (𝑥 = +∞ → (-∞(,)𝑥) = (-∞(,)+∞))
2827, 18eqtrdi 2795 . . . . . . . 8 (𝑥 = +∞ → (-∞(,)𝑥) = ℝ)
2928imaeq2d 5966 . . . . . . 7 (𝑥 = +∞ → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ ℝ))
3029eleq1d 2824 . . . . . 6 (𝑥 = +∞ → ((𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
3116, 30syl5ibrcom 246 . . . . 5 (𝜑 → (𝑥 = +∞ → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol))
3231imp 406 . . . 4 ((𝜑𝑥 = +∞) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
33 oveq2 7276 . . . . . . . 8 (𝑥 = -∞ → (-∞(,)𝑥) = (-∞(,)-∞))
34 iooid 13089 . . . . . . . 8 (-∞(,)-∞) = ∅
3533, 34eqtrdi 2795 . . . . . . 7 (𝑥 = -∞ → (-∞(,)𝑥) = ∅)
3635imaeq2d 5966 . . . . . 6 (𝑥 = -∞ → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ ∅))
3736, 10eqeltrdi 2848 . . . . 5 (𝑥 = -∞ → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
3837adantl 481 . . . 4 ((𝜑𝑥 = -∞) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
3926, 32, 383jaodan 1428 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
402, 39sylan2b 593 . 2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
411, 25, 40ismbfd 24784 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1084   = wceq 1541  wcel 2109  c0 4261  ccnv 5587  dom cdm 5588  cima 5591  wf 6426  (class class class)co 7268  cr 10854  +∞cpnf 10990  -∞cmnf 10991  *cxr 10992  (,)cioo 13061  volcvol 24608  MblFncmbf 24759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-oi 9230  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xadd 12831  df-ioo 13065  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-sum 15379  df-xmet 20571  df-met 20572  df-ovol 24609  df-vol 24610  df-mbf 24764
This theorem is referenced by:  mbfres  24789  mbfmulc2lem  24792  mbfposr  24797  ismbf3d  24799  iblabsnclem  35819  ftc1anclem1  35829  ftc1anclem6  35834
  Copyright terms: Public domain W3C validator