MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf2d Structured version   Visualization version   GIF version

Theorem ismbf2d 25593
Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf2d.1 (𝜑𝐹:𝐴⟶ℝ)
ismbf2d.2 (𝜑𝐴 ∈ dom vol)
ismbf2d.3 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
ismbf2d.4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
Assertion
Ref Expression
ismbf2d (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbf2d
StepHypRef Expression
1 ismbf2d.1 . 2 (𝜑𝐹:𝐴⟶ℝ)
2 elxr 13132 . . 3 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
3 ismbf2d.3 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
4 oveq1 7412 . . . . . . . 8 (𝑥 = +∞ → (𝑥(,)+∞) = (+∞(,)+∞))
5 iooid 13390 . . . . . . . 8 (+∞(,)+∞) = ∅
64, 5eqtrdi 2786 . . . . . . 7 (𝑥 = +∞ → (𝑥(,)+∞) = ∅)
76imaeq2d 6047 . . . . . 6 (𝑥 = +∞ → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ∅))
8 ima0 6064 . . . . . . 7 (𝐹 “ ∅) = ∅
9 0mbl 25492 . . . . . . 7 ∅ ∈ dom vol
108, 9eqeltri 2830 . . . . . 6 (𝐹 “ ∅) ∈ dom vol
117, 10eqeltrdi 2842 . . . . 5 (𝑥 = +∞ → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
1211adantl 481 . . . 4 ((𝜑𝑥 = +∞) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
13 fimacnv 6728 . . . . . . . 8 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
141, 13syl 17 . . . . . . 7 (𝜑 → (𝐹 “ ℝ) = 𝐴)
15 ismbf2d.2 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
1614, 15eqeltrd 2834 . . . . . 6 (𝜑 → (𝐹 “ ℝ) ∈ dom vol)
17 oveq1 7412 . . . . . . . . 9 (𝑥 = -∞ → (𝑥(,)+∞) = (-∞(,)+∞))
18 ioomax 13439 . . . . . . . . 9 (-∞(,)+∞) = ℝ
1917, 18eqtrdi 2786 . . . . . . . 8 (𝑥 = -∞ → (𝑥(,)+∞) = ℝ)
2019imaeq2d 6047 . . . . . . 7 (𝑥 = -∞ → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ℝ))
2120eleq1d 2819 . . . . . 6 (𝑥 = -∞ → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
2216, 21syl5ibrcom 247 . . . . 5 (𝜑 → (𝑥 = -∞ → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol))
2322imp 406 . . . 4 ((𝜑𝑥 = -∞) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
243, 12, 233jaodan 1433 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
252, 24sylan2b 594 . 2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
26 ismbf2d.4 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
27 oveq2 7413 . . . . . . . . 9 (𝑥 = +∞ → (-∞(,)𝑥) = (-∞(,)+∞))
2827, 18eqtrdi 2786 . . . . . . . 8 (𝑥 = +∞ → (-∞(,)𝑥) = ℝ)
2928imaeq2d 6047 . . . . . . 7 (𝑥 = +∞ → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ ℝ))
3029eleq1d 2819 . . . . . 6 (𝑥 = +∞ → ((𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
3116, 30syl5ibrcom 247 . . . . 5 (𝜑 → (𝑥 = +∞ → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol))
3231imp 406 . . . 4 ((𝜑𝑥 = +∞) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
33 oveq2 7413 . . . . . . . 8 (𝑥 = -∞ → (-∞(,)𝑥) = (-∞(,)-∞))
34 iooid 13390 . . . . . . . 8 (-∞(,)-∞) = ∅
3533, 34eqtrdi 2786 . . . . . . 7 (𝑥 = -∞ → (-∞(,)𝑥) = ∅)
3635imaeq2d 6047 . . . . . 6 (𝑥 = -∞ → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ ∅))
3736, 10eqeltrdi 2842 . . . . 5 (𝑥 = -∞ → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
3837adantl 481 . . . 4 ((𝜑𝑥 = -∞) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
3926, 32, 383jaodan 1433 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
402, 39sylan2b 594 . 2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
411, 25, 40ismbfd 25592 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1540  wcel 2108  c0 4308  ccnv 5653  dom cdm 5654  cima 5657  wf 6527  (class class class)co 7405  cr 11128  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268  (,)cioo 13362  volcvol 25416  MblFncmbf 25567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xadd 13129  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-xmet 21308  df-met 21309  df-ovol 25417  df-vol 25418  df-mbf 25572
This theorem is referenced by:  mbfres  25597  mbfmulc2lem  25600  mbfposr  25605  ismbf3d  25607  iblabsnclem  37707  ftc1anclem1  37717  ftc1anclem6  37722
  Copyright terms: Public domain W3C validator