| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismbf2d | Structured version Visualization version GIF version | ||
| Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ismbf2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| ismbf2d.2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| ismbf2d.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| ismbf2d.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| Ref | Expression |
|---|---|
| ismbf2d | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf2d.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 2 | elxr 13083 | . . 3 ⊢ (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) | |
| 3 | ismbf2d.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) | |
| 4 | oveq1 7397 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = (+∞(,)+∞)) | |
| 5 | iooid 13341 | . . . . . . . 8 ⊢ (+∞(,)+∞) = ∅ | |
| 6 | 4, 5 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = ∅) |
| 7 | 6 | imaeq2d 6034 | . . . . . 6 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ∅)) |
| 8 | ima0 6051 | . . . . . . 7 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 9 | 0mbl 25447 | . . . . . . 7 ⊢ ∅ ∈ dom vol | |
| 10 | 8, 9 | eqeltri 2825 | . . . . . 6 ⊢ (◡𝐹 “ ∅) ∈ dom vol |
| 11 | 7, 10 | eqeltrdi 2837 | . . . . 5 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 13 | fimacnv 6713 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
| 14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡𝐹 “ ℝ) = 𝐴) |
| 15 | ismbf2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
| 16 | 14, 15 | eqeltrd 2829 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ ℝ) ∈ dom vol) |
| 17 | oveq1 7397 | . . . . . . . . 9 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = (-∞(,)+∞)) | |
| 18 | ioomax 13390 | . . . . . . . . 9 ⊢ (-∞(,)+∞) = ℝ | |
| 19 | 17, 18 | eqtrdi 2781 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = ℝ) |
| 20 | 19 | imaeq2d 6034 | . . . . . . 7 ⊢ (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ℝ)) |
| 21 | 20 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = -∞ → ((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
| 22 | 16, 21 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol)) |
| 23 | 22 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 24 | 3, 12, 23 | 3jaodan 1433 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 25 | 2, 24 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 26 | ismbf2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) | |
| 27 | oveq2 7398 | . . . . . . . . 9 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = (-∞(,)+∞)) | |
| 28 | 27, 18 | eqtrdi 2781 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = ℝ) |
| 29 | 28 | imaeq2d 6034 | . . . . . . 7 ⊢ (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ℝ)) |
| 30 | 29 | eleq1d 2814 | . . . . . 6 ⊢ (𝑥 = +∞ → ((◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
| 31 | 16, 30 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol)) |
| 32 | 31 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 33 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = (-∞(,)-∞)) | |
| 34 | iooid 13341 | . . . . . . . 8 ⊢ (-∞(,)-∞) = ∅ | |
| 35 | 33, 34 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = ∅) |
| 36 | 35 | imaeq2d 6034 | . . . . . 6 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ∅)) |
| 37 | 36, 10 | eqeltrdi 2837 | . . . . 5 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 39 | 26, 32, 38 | 3jaodan 1433 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 40 | 2, 39 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 41 | 1, 25, 40 | ismbfd 25547 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∅c0 4299 ◡ccnv 5640 dom cdm 5641 “ cima 5644 ⟶wf 6510 (class class class)co 7390 ℝcr 11074 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 (,)cioo 13313 volcvol 25371 MblFncmbf 25522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 |
| This theorem is referenced by: mbfres 25552 mbfmulc2lem 25555 mbfposr 25560 ismbf3d 25562 iblabsnclem 37684 ftc1anclem1 37694 ftc1anclem6 37699 |
| Copyright terms: Public domain | W3C validator |