| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismbf2d | Structured version Visualization version GIF version | ||
| Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ismbf2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| ismbf2d.2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| ismbf2d.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| ismbf2d.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| Ref | Expression |
|---|---|
| ismbf2d | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf2d.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 2 | elxr 13076 | . . 3 ⊢ (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) | |
| 3 | ismbf2d.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) | |
| 4 | oveq1 7394 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = (+∞(,)+∞)) | |
| 5 | iooid 13334 | . . . . . . . 8 ⊢ (+∞(,)+∞) = ∅ | |
| 6 | 4, 5 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = ∅) |
| 7 | 6 | imaeq2d 6031 | . . . . . 6 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ∅)) |
| 8 | ima0 6048 | . . . . . . 7 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 9 | 0mbl 25440 | . . . . . . 7 ⊢ ∅ ∈ dom vol | |
| 10 | 8, 9 | eqeltri 2824 | . . . . . 6 ⊢ (◡𝐹 “ ∅) ∈ dom vol |
| 11 | 7, 10 | eqeltrdi 2836 | . . . . 5 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 13 | fimacnv 6710 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
| 14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡𝐹 “ ℝ) = 𝐴) |
| 15 | ismbf2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
| 16 | 14, 15 | eqeltrd 2828 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ ℝ) ∈ dom vol) |
| 17 | oveq1 7394 | . . . . . . . . 9 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = (-∞(,)+∞)) | |
| 18 | ioomax 13383 | . . . . . . . . 9 ⊢ (-∞(,)+∞) = ℝ | |
| 19 | 17, 18 | eqtrdi 2780 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = ℝ) |
| 20 | 19 | imaeq2d 6031 | . . . . . . 7 ⊢ (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ℝ)) |
| 21 | 20 | eleq1d 2813 | . . . . . 6 ⊢ (𝑥 = -∞ → ((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
| 22 | 16, 21 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol)) |
| 23 | 22 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 24 | 3, 12, 23 | 3jaodan 1433 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 25 | 2, 24 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 26 | ismbf2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) | |
| 27 | oveq2 7395 | . . . . . . . . 9 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = (-∞(,)+∞)) | |
| 28 | 27, 18 | eqtrdi 2780 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = ℝ) |
| 29 | 28 | imaeq2d 6031 | . . . . . . 7 ⊢ (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ℝ)) |
| 30 | 29 | eleq1d 2813 | . . . . . 6 ⊢ (𝑥 = +∞ → ((◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
| 31 | 16, 30 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol)) |
| 32 | 31 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 33 | oveq2 7395 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = (-∞(,)-∞)) | |
| 34 | iooid 13334 | . . . . . . . 8 ⊢ (-∞(,)-∞) = ∅ | |
| 35 | 33, 34 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = ∅) |
| 36 | 35 | imaeq2d 6031 | . . . . . 6 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ∅)) |
| 37 | 36, 10 | eqeltrdi 2836 | . . . . 5 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 39 | 26, 32, 38 | 3jaodan 1433 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 40 | 2, 39 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 41 | 1, 25, 40 | ismbfd 25540 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∅c0 4296 ◡ccnv 5637 dom cdm 5638 “ cima 5641 ⟶wf 6507 (class class class)co 7387 ℝcr 11067 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 (,)cioo 13306 volcvol 25364 MblFncmbf 25515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 |
| This theorem is referenced by: mbfres 25545 mbfmulc2lem 25548 mbfposr 25553 ismbf3d 25555 iblabsnclem 37677 ftc1anclem1 37687 ftc1anclem6 37692 |
| Copyright terms: Public domain | W3C validator |