| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismbf2d | Structured version Visualization version GIF version | ||
| Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ismbf2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| ismbf2d.2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| ismbf2d.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| ismbf2d.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| Ref | Expression |
|---|---|
| ismbf2d | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf2d.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 2 | elxr 13132 | . . 3 ⊢ (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) | |
| 3 | ismbf2d.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) | |
| 4 | oveq1 7412 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = (+∞(,)+∞)) | |
| 5 | iooid 13390 | . . . . . . . 8 ⊢ (+∞(,)+∞) = ∅ | |
| 6 | 4, 5 | eqtrdi 2786 | . . . . . . 7 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = ∅) |
| 7 | 6 | imaeq2d 6047 | . . . . . 6 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ∅)) |
| 8 | ima0 6064 | . . . . . . 7 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 9 | 0mbl 25492 | . . . . . . 7 ⊢ ∅ ∈ dom vol | |
| 10 | 8, 9 | eqeltri 2830 | . . . . . 6 ⊢ (◡𝐹 “ ∅) ∈ dom vol |
| 11 | 7, 10 | eqeltrdi 2842 | . . . . 5 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 13 | fimacnv 6728 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
| 14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡𝐹 “ ℝ) = 𝐴) |
| 15 | ismbf2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
| 16 | 14, 15 | eqeltrd 2834 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ ℝ) ∈ dom vol) |
| 17 | oveq1 7412 | . . . . . . . . 9 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = (-∞(,)+∞)) | |
| 18 | ioomax 13439 | . . . . . . . . 9 ⊢ (-∞(,)+∞) = ℝ | |
| 19 | 17, 18 | eqtrdi 2786 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = ℝ) |
| 20 | 19 | imaeq2d 6047 | . . . . . . 7 ⊢ (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ℝ)) |
| 21 | 20 | eleq1d 2819 | . . . . . 6 ⊢ (𝑥 = -∞ → ((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
| 22 | 16, 21 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol)) |
| 23 | 22 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 24 | 3, 12, 23 | 3jaodan 1433 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 25 | 2, 24 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 26 | ismbf2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) | |
| 27 | oveq2 7413 | . . . . . . . . 9 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = (-∞(,)+∞)) | |
| 28 | 27, 18 | eqtrdi 2786 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = ℝ) |
| 29 | 28 | imaeq2d 6047 | . . . . . . 7 ⊢ (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ℝ)) |
| 30 | 29 | eleq1d 2819 | . . . . . 6 ⊢ (𝑥 = +∞ → ((◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
| 31 | 16, 30 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol)) |
| 32 | 31 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 33 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = (-∞(,)-∞)) | |
| 34 | iooid 13390 | . . . . . . . 8 ⊢ (-∞(,)-∞) = ∅ | |
| 35 | 33, 34 | eqtrdi 2786 | . . . . . . 7 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = ∅) |
| 36 | 35 | imaeq2d 6047 | . . . . . 6 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ∅)) |
| 37 | 36, 10 | eqeltrdi 2842 | . . . . 5 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 39 | 26, 32, 38 | 3jaodan 1433 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 40 | 2, 39 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 41 | 1, 25, 40 | ismbfd 25592 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1540 ∈ wcel 2108 ∅c0 4308 ◡ccnv 5653 dom cdm 5654 “ cima 5657 ⟶wf 6527 (class class class)co 7405 ℝcr 11128 +∞cpnf 11266 -∞cmnf 11267 ℝ*cxr 11268 (,)cioo 13362 volcvol 25416 MblFncmbf 25567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xadd 13129 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-xmet 21308 df-met 21309 df-ovol 25417 df-vol 25418 df-mbf 25572 |
| This theorem is referenced by: mbfres 25597 mbfmulc2lem 25600 mbfposr 25605 ismbf3d 25607 iblabsnclem 37707 ftc1anclem1 37717 ftc1anclem6 37722 |
| Copyright terms: Public domain | W3C validator |