MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf2d Structured version   Visualization version   GIF version

Theorem ismbf2d 25689
Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf2d.1 (𝜑𝐹:𝐴⟶ℝ)
ismbf2d.2 (𝜑𝐴 ∈ dom vol)
ismbf2d.3 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
ismbf2d.4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
Assertion
Ref Expression
ismbf2d (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbf2d
StepHypRef Expression
1 ismbf2d.1 . 2 (𝜑𝐹:𝐴⟶ℝ)
2 elxr 13156 . . 3 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
3 ismbf2d.3 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
4 oveq1 7438 . . . . . . . 8 (𝑥 = +∞ → (𝑥(,)+∞) = (+∞(,)+∞))
5 iooid 13412 . . . . . . . 8 (+∞(,)+∞) = ∅
64, 5eqtrdi 2791 . . . . . . 7 (𝑥 = +∞ → (𝑥(,)+∞) = ∅)
76imaeq2d 6080 . . . . . 6 (𝑥 = +∞ → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ∅))
8 ima0 6097 . . . . . . 7 (𝐹 “ ∅) = ∅
9 0mbl 25588 . . . . . . 7 ∅ ∈ dom vol
108, 9eqeltri 2835 . . . . . 6 (𝐹 “ ∅) ∈ dom vol
117, 10eqeltrdi 2847 . . . . 5 (𝑥 = +∞ → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
1211adantl 481 . . . 4 ((𝜑𝑥 = +∞) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
13 fimacnv 6759 . . . . . . . 8 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
141, 13syl 17 . . . . . . 7 (𝜑 → (𝐹 “ ℝ) = 𝐴)
15 ismbf2d.2 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
1614, 15eqeltrd 2839 . . . . . 6 (𝜑 → (𝐹 “ ℝ) ∈ dom vol)
17 oveq1 7438 . . . . . . . . 9 (𝑥 = -∞ → (𝑥(,)+∞) = (-∞(,)+∞))
18 ioomax 13459 . . . . . . . . 9 (-∞(,)+∞) = ℝ
1917, 18eqtrdi 2791 . . . . . . . 8 (𝑥 = -∞ → (𝑥(,)+∞) = ℝ)
2019imaeq2d 6080 . . . . . . 7 (𝑥 = -∞ → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ℝ))
2120eleq1d 2824 . . . . . 6 (𝑥 = -∞ → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
2216, 21syl5ibrcom 247 . . . . 5 (𝜑 → (𝑥 = -∞ → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol))
2322imp 406 . . . 4 ((𝜑𝑥 = -∞) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
243, 12, 233jaodan 1430 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
252, 24sylan2b 594 . 2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
26 ismbf2d.4 . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
27 oveq2 7439 . . . . . . . . 9 (𝑥 = +∞ → (-∞(,)𝑥) = (-∞(,)+∞))
2827, 18eqtrdi 2791 . . . . . . . 8 (𝑥 = +∞ → (-∞(,)𝑥) = ℝ)
2928imaeq2d 6080 . . . . . . 7 (𝑥 = +∞ → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ ℝ))
3029eleq1d 2824 . . . . . 6 (𝑥 = +∞ → ((𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
3116, 30syl5ibrcom 247 . . . . 5 (𝜑 → (𝑥 = +∞ → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol))
3231imp 406 . . . 4 ((𝜑𝑥 = +∞) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
33 oveq2 7439 . . . . . . . 8 (𝑥 = -∞ → (-∞(,)𝑥) = (-∞(,)-∞))
34 iooid 13412 . . . . . . . 8 (-∞(,)-∞) = ∅
3533, 34eqtrdi 2791 . . . . . . 7 (𝑥 = -∞ → (-∞(,)𝑥) = ∅)
3635imaeq2d 6080 . . . . . 6 (𝑥 = -∞ → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ ∅))
3736, 10eqeltrdi 2847 . . . . 5 (𝑥 = -∞ → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
3837adantl 481 . . . 4 ((𝜑𝑥 = -∞) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
3926, 32, 383jaodan 1430 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
402, 39sylan2b 594 . 2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
411, 25, 40ismbfd 25688 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085   = wceq 1537  wcel 2106  c0 4339  ccnv 5688  dom cdm 5689  cima 5692  wf 6559  (class class class)co 7431  cr 11152  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292  (,)cioo 13384  volcvol 25512  MblFncmbf 25663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xadd 13153  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-xmet 21375  df-met 21376  df-ovol 25513  df-vol 25514  df-mbf 25668
This theorem is referenced by:  mbfres  25693  mbfmulc2lem  25696  mbfposr  25701  ismbf3d  25703  iblabsnclem  37670  ftc1anclem1  37680  ftc1anclem6  37685
  Copyright terms: Public domain W3C validator