Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismbf2d | Structured version Visualization version GIF version |
Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
ismbf2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
ismbf2d.2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
ismbf2d.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
ismbf2d.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
Ref | Expression |
---|---|
ismbf2d | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismbf2d.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
2 | elxr 12781 | . . 3 ⊢ (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) | |
3 | ismbf2d.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) | |
4 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = (+∞(,)+∞)) | |
5 | iooid 13036 | . . . . . . . 8 ⊢ (+∞(,)+∞) = ∅ | |
6 | 4, 5 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = ∅) |
7 | 6 | imaeq2d 5958 | . . . . . 6 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ∅)) |
8 | ima0 5974 | . . . . . . 7 ⊢ (◡𝐹 “ ∅) = ∅ | |
9 | 0mbl 24608 | . . . . . . 7 ⊢ ∅ ∈ dom vol | |
10 | 8, 9 | eqeltri 2835 | . . . . . 6 ⊢ (◡𝐹 “ ∅) ∈ dom vol |
11 | 7, 10 | eqeltrdi 2847 | . . . . 5 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
13 | fimacnv 6606 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡𝐹 “ ℝ) = 𝐴) |
15 | ismbf2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
16 | 14, 15 | eqeltrd 2839 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ ℝ) ∈ dom vol) |
17 | oveq1 7262 | . . . . . . . . 9 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = (-∞(,)+∞)) | |
18 | ioomax 13083 | . . . . . . . . 9 ⊢ (-∞(,)+∞) = ℝ | |
19 | 17, 18 | eqtrdi 2795 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = ℝ) |
20 | 19 | imaeq2d 5958 | . . . . . . 7 ⊢ (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ℝ)) |
21 | 20 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = -∞ → ((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
22 | 16, 21 | syl5ibrcom 246 | . . . . 5 ⊢ (𝜑 → (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol)) |
23 | 22 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
24 | 3, 12, 23 | 3jaodan 1428 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
25 | 2, 24 | sylan2b 593 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
26 | ismbf2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) | |
27 | oveq2 7263 | . . . . . . . . 9 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = (-∞(,)+∞)) | |
28 | 27, 18 | eqtrdi 2795 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = ℝ) |
29 | 28 | imaeq2d 5958 | . . . . . . 7 ⊢ (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ℝ)) |
30 | 29 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = +∞ → ((◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
31 | 16, 30 | syl5ibrcom 246 | . . . . 5 ⊢ (𝜑 → (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol)) |
32 | 31 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
33 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = (-∞(,)-∞)) | |
34 | iooid 13036 | . . . . . . . 8 ⊢ (-∞(,)-∞) = ∅ | |
35 | 33, 34 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = ∅) |
36 | 35 | imaeq2d 5958 | . . . . . 6 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ∅)) |
37 | 36, 10 | eqeltrdi 2847 | . . . . 5 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
39 | 26, 32, 38 | 3jaodan 1428 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
40 | 2, 39 | sylan2b 593 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
41 | 1, 25, 40 | ismbfd 24708 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1084 = wceq 1539 ∈ wcel 2108 ∅c0 4253 ◡ccnv 5579 dom cdm 5580 “ cima 5583 ⟶wf 6414 (class class class)co 7255 ℝcr 10801 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 (,)cioo 13008 volcvol 24532 MblFncmbf 24683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 |
This theorem is referenced by: mbfres 24713 mbfmulc2lem 24716 mbfposr 24721 ismbf3d 24723 iblabsnclem 35767 ftc1anclem1 35777 ftc1anclem6 35782 |
Copyright terms: Public domain | W3C validator |