| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismbf2d | Structured version Visualization version GIF version | ||
| Description: Deduction to prove measurability of a real function. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| ismbf2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| ismbf2d.2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| ismbf2d.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| ismbf2d.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| Ref | Expression |
|---|---|
| ismbf2d | ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbf2d.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 2 | elxr 13015 | . . 3 ⊢ (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) | |
| 3 | ismbf2d.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) | |
| 4 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = (+∞(,)+∞)) | |
| 5 | iooid 13273 | . . . . . . . 8 ⊢ (+∞(,)+∞) = ∅ | |
| 6 | 4, 5 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝑥 = +∞ → (𝑥(,)+∞) = ∅) |
| 7 | 6 | imaeq2d 6009 | . . . . . 6 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ∅)) |
| 8 | ima0 6026 | . . . . . . 7 ⊢ (◡𝐹 “ ∅) = ∅ | |
| 9 | 0mbl 25468 | . . . . . . 7 ⊢ ∅ ∈ dom vol | |
| 10 | 8, 9 | eqeltri 2827 | . . . . . 6 ⊢ (◡𝐹 “ ∅) ∈ dom vol |
| 11 | 7, 10 | eqeltrdi 2839 | . . . . 5 ⊢ (𝑥 = +∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 13 | fimacnv 6673 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
| 14 | 1, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡𝐹 “ ℝ) = 𝐴) |
| 15 | ismbf2d.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ dom vol) | |
| 16 | 14, 15 | eqeltrd 2831 | . . . . . 6 ⊢ (𝜑 → (◡𝐹 “ ℝ) ∈ dom vol) |
| 17 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = (-∞(,)+∞)) | |
| 18 | ioomax 13322 | . . . . . . . . 9 ⊢ (-∞(,)+∞) = ℝ | |
| 19 | 17, 18 | eqtrdi 2782 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (𝑥(,)+∞) = ℝ) |
| 20 | 19 | imaeq2d 6009 | . . . . . . 7 ⊢ (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ℝ)) |
| 21 | 20 | eleq1d 2816 | . . . . . 6 ⊢ (𝑥 = -∞ → ((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
| 22 | 16, 21 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = -∞ → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol)) |
| 23 | 22 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 24 | 3, 12, 23 | 3jaodan 1433 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 25 | 2, 24 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol) |
| 26 | ismbf2d.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) | |
| 27 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = (-∞(,)+∞)) | |
| 28 | 27, 18 | eqtrdi 2782 | . . . . . . . 8 ⊢ (𝑥 = +∞ → (-∞(,)𝑥) = ℝ) |
| 29 | 28 | imaeq2d 6009 | . . . . . . 7 ⊢ (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ℝ)) |
| 30 | 29 | eleq1d 2816 | . . . . . 6 ⊢ (𝑥 = +∞ → ((◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (◡𝐹 “ ℝ) ∈ dom vol)) |
| 31 | 16, 30 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑥 = +∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol)) |
| 32 | 31 | imp 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = +∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 33 | oveq2 7354 | . . . . . . . 8 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = (-∞(,)-∞)) | |
| 34 | iooid 13273 | . . . . . . . 8 ⊢ (-∞(,)-∞) = ∅ | |
| 35 | 33, 34 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝑥 = -∞ → (-∞(,)𝑥) = ∅) |
| 36 | 35 | imaeq2d 6009 | . . . . . 6 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) = (◡𝐹 “ ∅)) |
| 37 | 36, 10 | eqeltrdi 2839 | . . . . 5 ⊢ (𝑥 = -∞ → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 38 | 37 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = -∞) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 39 | 26, 32, 38 | 3jaodan 1433 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 40 | 2, 39 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ*) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
| 41 | 1, 25, 40 | ismbfd 25568 | 1 ⊢ (𝜑 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 ∅c0 4283 ◡ccnv 5615 dom cdm 5616 “ cima 5619 ⟶wf 6477 (class class class)co 7346 ℝcr 11005 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 (,)cioo 13245 volcvol 25392 MblFncmbf 25543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21285 df-met 21286 df-ovol 25393 df-vol 25394 df-mbf 25548 |
| This theorem is referenced by: mbfres 25573 mbfmulc2lem 25576 mbfposr 25581 ismbf3d 25583 iblabsnclem 37729 ftc1anclem1 37739 ftc1anclem6 37744 |
| Copyright terms: Public domain | W3C validator |