MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly3 Structured version   Visualization version   GIF version

Theorem bpoly3 16055
Description: The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly3 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))

Proof of Theorem bpoly3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 3nn0 12536 . . 3 3 ∈ ℕ0
2 bpolyval 16046 . . 3 ((3 ∈ ℕ0𝑋 ∈ ℂ) → (3 BernPoly 𝑋) = ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))))
31, 2mpan 688 . 2 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))))
4 3m1e2 12386 . . . . . . 7 (3 − 1) = 2
5 df-2 12321 . . . . . . 7 2 = (1 + 1)
64, 5eqtri 2754 . . . . . 6 (3 − 1) = (1 + 1)
76oveq2i 7427 . . . . 5 (0...(3 − 1)) = (0...(1 + 1))
87sumeq1i 15697 . . . 4 Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))
9 1eluzge0 12922 . . . . . . 7 1 ∈ (ℤ‘0)
109a1i 11 . . . . . 6 (𝑋 ∈ ℂ → 1 ∈ (ℤ‘0))
11 0z 12615 . . . . . . . . . . . . 13 0 ∈ ℤ
12 fzpr 13604 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1311, 12ax-mp 5 . . . . . . . . . . . 12 (0...(0 + 1)) = {0, (0 + 1)}
14 0p1e1 12380 . . . . . . . . . . . . 13 (0 + 1) = 1
1514oveq2i 7427 . . . . . . . . . . . 12 (0...(0 + 1)) = (0...1)
1614preq2i 4736 . . . . . . . . . . . 12 {0, (0 + 1)} = {0, 1}
1713, 15, 163eqtr3ri 2763 . . . . . . . . . . 11 {0, 1} = (0...1)
185sneqi 4634 . . . . . . . . . . 11 {2} = {(1 + 1)}
1917, 18uneq12i 4158 . . . . . . . . . 10 ({0, 1} ∪ {2}) = ((0...1) ∪ {(1 + 1)})
20 df-tp 4628 . . . . . . . . . 10 {0, 1, 2} = ({0, 1} ∪ {2})
21 fzsuc 13596 . . . . . . . . . . 11 (1 ∈ (ℤ‘0) → (0...(1 + 1)) = ((0...1) ∪ {(1 + 1)}))
229, 21ax-mp 5 . . . . . . . . . 10 (0...(1 + 1)) = ((0...1) ∪ {(1 + 1)})
2319, 20, 223eqtr4ri 2765 . . . . . . . . 9 (0...(1 + 1)) = {0, 1, 2}
2423eleq2i 2818 . . . . . . . 8 (𝑘 ∈ (0...(1 + 1)) ↔ 𝑘 ∈ {0, 1, 2})
25 vex 3466 . . . . . . . . 9 𝑘 ∈ V
2625eltp 4687 . . . . . . . 8 (𝑘 ∈ {0, 1, 2} ↔ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2))
2724, 26bitri 274 . . . . . . 7 (𝑘 ∈ (0...(1 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2))
28 oveq2 7424 . . . . . . . . . . . 12 (𝑘 = 0 → (3C𝑘) = (3C0))
29 bcn0 14322 . . . . . . . . . . . . 13 (3 ∈ ℕ0 → (3C0) = 1)
301, 29ax-mp 5 . . . . . . . . . . . 12 (3C0) = 1
3128, 30eqtrdi 2782 . . . . . . . . . . 11 (𝑘 = 0 → (3C𝑘) = 1)
32 oveq1 7423 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
33 oveq2 7424 . . . . . . . . . . . . . 14 (𝑘 = 0 → (3 − 𝑘) = (3 − 0))
3433oveq1d 7431 . . . . . . . . . . . . 13 (𝑘 = 0 → ((3 − 𝑘) + 1) = ((3 − 0) + 1))
35 3cn 12339 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
3635subid1i 11573 . . . . . . . . . . . . . . 15 (3 − 0) = 3
3736oveq1i 7426 . . . . . . . . . . . . . 14 ((3 − 0) + 1) = (3 + 1)
38 df-4 12323 . . . . . . . . . . . . . 14 4 = (3 + 1)
3937, 38eqtr4i 2757 . . . . . . . . . . . . 13 ((3 − 0) + 1) = 4
4034, 39eqtrdi 2782 . . . . . . . . . . . 12 (𝑘 = 0 → ((3 − 𝑘) + 1) = 4)
4132, 40oveq12d 7434 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 4))
4231, 41oveq12d 7434 . . . . . . . . . 10 (𝑘 = 0 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
43 bpoly0 16047 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
4443oveq1d 7431 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 4) = (1 / 4))
4544oveq2d 7432 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) = (1 · (1 / 4)))
46 4cn 12343 . . . . . . . . . . . . 13 4 ∈ ℂ
47 4ne0 12366 . . . . . . . . . . . . 13 4 ≠ 0
4846, 47reccli 11989 . . . . . . . . . . . 12 (1 / 4) ∈ ℂ
4948mullidi 11260 . . . . . . . . . . 11 (1 · (1 / 4)) = (1 / 4)
5045, 49eqtrdi 2782 . . . . . . . . . 10 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) = (1 / 4))
5142, 50sylan9eqr 2788 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 / 4))
5251, 48eqeltrdi 2834 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
53 oveq2 7424 . . . . . . . . . . . 12 (𝑘 = 1 → (3C𝑘) = (3C1))
54 bcn1 14325 . . . . . . . . . . . . 13 (3 ∈ ℕ0 → (3C1) = 3)
551, 54ax-mp 5 . . . . . . . . . . . 12 (3C1) = 3
5653, 55eqtrdi 2782 . . . . . . . . . . 11 (𝑘 = 1 → (3C𝑘) = 3)
57 oveq1 7423 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
58 oveq2 7424 . . . . . . . . . . . . . 14 (𝑘 = 1 → (3 − 𝑘) = (3 − 1))
5958oveq1d 7431 . . . . . . . . . . . . 13 (𝑘 = 1 → ((3 − 𝑘) + 1) = ((3 − 1) + 1))
60 ax-1cn 11207 . . . . . . . . . . . . . 14 1 ∈ ℂ
61 npcan 11510 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ 1 ∈ ℂ) → ((3 − 1) + 1) = 3)
6235, 60, 61mp2an 690 . . . . . . . . . . . . 13 ((3 − 1) + 1) = 3
6359, 62eqtrdi 2782 . . . . . . . . . . . 12 (𝑘 = 1 → ((3 − 𝑘) + 1) = 3)
6457, 63oveq12d 7434 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 3))
6556, 64oveq12d 7434 . . . . . . . . . 10 (𝑘 = 1 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((1 BernPoly 𝑋) / 3)))
66 bpoly1 16048 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6766oveq1d 7431 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 3) = ((𝑋 − (1 / 2)) / 3))
6867oveq2d 7432 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((1 BernPoly 𝑋) / 3)) = (3 · ((𝑋 − (1 / 2)) / 3)))
69 halfcn 12473 . . . . . . . . . . . . 13 (1 / 2) ∈ ℂ
70 subcl 11500 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
7169, 70mpan2 689 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
72 3ne0 12364 . . . . . . . . . . . . 13 3 ≠ 0
73 divcan2 11922 . . . . . . . . . . . . 13 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7435, 72, 73mp3an23 1450 . . . . . . . . . . . 12 ((𝑋 − (1 / 2)) ∈ ℂ → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7571, 74syl 17 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7668, 75eqtrd 2766 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · ((1 BernPoly 𝑋) / 3)) = (𝑋 − (1 / 2)))
7765, 76sylan9eqr 2788 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7871adantr 479 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → (𝑋 − (1 / 2)) ∈ ℂ)
7977, 78eqeltrd 2826 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
80 oveq2 7424 . . . . . . . . . . . 12 (𝑘 = 2 → (3C𝑘) = (3C2))
81 bcn2 14331 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (3C2) = ((3 · (3 − 1)) / 2))
821, 81ax-mp 5 . . . . . . . . . . . . 13 (3C2) = ((3 · (3 − 1)) / 2)
834oveq2i 7427 . . . . . . . . . . . . . . 15 (3 · (3 − 1)) = (3 · 2)
8483oveq1i 7426 . . . . . . . . . . . . . 14 ((3 · (3 − 1)) / 2) = ((3 · 2) / 2)
85 2cn 12333 . . . . . . . . . . . . . . 15 2 ∈ ℂ
86 2ne0 12362 . . . . . . . . . . . . . . 15 2 ≠ 0
8735, 85, 86divcan4i 12006 . . . . . . . . . . . . . 14 ((3 · 2) / 2) = 3
8884, 87eqtri 2754 . . . . . . . . . . . . 13 ((3 · (3 − 1)) / 2) = 3
8982, 88eqtri 2754 . . . . . . . . . . . 12 (3C2) = 3
9080, 89eqtrdi 2782 . . . . . . . . . . 11 (𝑘 = 2 → (3C𝑘) = 3)
91 oveq1 7423 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 BernPoly 𝑋) = (2 BernPoly 𝑋))
92 oveq2 7424 . . . . . . . . . . . . . 14 (𝑘 = 2 → (3 − 𝑘) = (3 − 2))
9392oveq1d 7431 . . . . . . . . . . . . 13 (𝑘 = 2 → ((3 − 𝑘) + 1) = ((3 − 2) + 1))
94 2p1e3 12400 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
9535, 85, 60, 94subaddrii 11590 . . . . . . . . . . . . . . 15 (3 − 2) = 1
9695oveq1i 7426 . . . . . . . . . . . . . 14 ((3 − 2) + 1) = (1 + 1)
9796, 5eqtr4i 2757 . . . . . . . . . . . . 13 ((3 − 2) + 1) = 2
9893, 97eqtrdi 2782 . . . . . . . . . . . 12 (𝑘 = 2 → ((3 − 𝑘) + 1) = 2)
9991, 98oveq12d 7434 . . . . . . . . . . 11 (𝑘 = 2 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((2 BernPoly 𝑋) / 2))
10090, 99oveq12d 7434 . . . . . . . . . 10 (𝑘 = 2 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((2 BernPoly 𝑋) / 2)))
101 2nn0 12535 . . . . . . . . . . . . 13 2 ∈ ℕ0
102 bpolycl 16049 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) ∈ ℂ)
103101, 102mpan 688 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) ∈ ℂ)
104 2cnne0 12468 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
105 div12 11936 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (2 BernPoly 𝑋) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
10635, 104, 105mp3an13 1449 . . . . . . . . . . . 12 ((2 BernPoly 𝑋) ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
107103, 106syl 17 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
10835, 85, 86divcli 12001 . . . . . . . . . . . 12 (3 / 2) ∈ ℂ
109 mulcom 11235 . . . . . . . . . . . 12 (((2 BernPoly 𝑋) ∈ ℂ ∧ (3 / 2) ∈ ℂ) → ((2 BernPoly 𝑋) · (3 / 2)) = ((3 / 2) · (2 BernPoly 𝑋)))
110103, 108, 109sylancl 584 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · (3 / 2)) = ((3 / 2) · (2 BernPoly 𝑋)))
111 bpoly2 16054 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
112111oveq2d 7432 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · (2 BernPoly 𝑋)) = ((3 / 2) · (((𝑋↑2) − 𝑋) + (1 / 6))))
113 sqcl 14131 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
114 6cn 12349 . . . . . . . . . . . . . . . 16 6 ∈ ℂ
115 6re 12348 . . . . . . . . . . . . . . . . 17 6 ∈ ℝ
116 6pos 12368 . . . . . . . . . . . . . . . . 17 0 < 6
117115, 116gt0ne0ii 11791 . . . . . . . . . . . . . . . 16 6 ≠ 0
118114, 117reccli 11989 . . . . . . . . . . . . . . 15 (1 / 6) ∈ ℂ
119 subsub 11531 . . . . . . . . . . . . . . 15 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
120118, 119mp3an3 1447 . . . . . . . . . . . . . 14 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
121113, 120mpancom 686 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
122121oveq2d 7432 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = ((3 / 2) · (((𝑋↑2) − 𝑋) + (1 / 6))))
123 subcl 11500 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 − (1 / 6)) ∈ ℂ)
124118, 123mpan2 689 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 6)) ∈ ℂ)
125 subdi 11688 . . . . . . . . . . . . 13 (((3 / 2) ∈ ℂ ∧ (𝑋↑2) ∈ ℂ ∧ (𝑋 − (1 / 6)) ∈ ℂ) → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
126108, 113, 124, 125mp3an2i 1463 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
127112, 122, 1263eqtr2d 2772 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (2 BernPoly 𝑋)) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
128107, 110, 1273eqtrd 2770 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
129100, 128sylan9eqr 2788 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
130 mulcl 11233 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ (𝑋↑2) ∈ ℂ) → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
131108, 113, 130sylancr 585 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
132 mulcl 11233 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ (𝑋 − (1 / 6)) ∈ ℂ) → ((3 / 2) · (𝑋 − (1 / 6))) ∈ ℂ)
133108, 124, 132sylancr 585 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋 − (1 / 6))) ∈ ℂ)
134131, 133subcld 11612 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))) ∈ ℂ)
135134adantr 479 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))) ∈ ℂ)
136129, 135eqeltrd 2826 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
13752, 79, 1363jaodan 1428 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2)) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
13827, 137sylan2b 592 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(1 + 1))) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
1395eqeq2i 2739 . . . . . . 7 (𝑘 = 2 ↔ 𝑘 = (1 + 1))
140139, 100sylbir 234 . . . . . 6 (𝑘 = (1 + 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((2 BernPoly 𝑋) / 2)))
14110, 138, 140fsump1 15755 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((2 BernPoly 𝑋) / 2))))
142128oveq2d 7432 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((2 BernPoly 𝑋) / 2))) = (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))))
14315sumeq1i 15697 . . . . . . . . 9 Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))
144 0nn0 12533 . . . . . . . . . . . . 13 0 ∈ ℕ0
145 nn0uz 12910 . . . . . . . . . . . . 13 0 = (ℤ‘0)
146144, 145eleqtri 2824 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
147146a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
14813, 16eqtri 2754 . . . . . . . . . . . . . 14 (0...(0 + 1)) = {0, 1}
149148eleq2i 2818 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, 1})
15025elpr 4647 . . . . . . . . . . . . 13 (𝑘 ∈ {0, 1} ↔ (𝑘 = 0 ∨ 𝑘 = 1))
151149, 150bitri 274 . . . . . . . . . . . 12 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = 1))
15252, 79jaodan 955 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = 1)) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
153151, 152sylan2b 592 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
15414eqeq2i 2739 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
155154, 65sylbi 216 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((1 BernPoly 𝑋) / 3)))
156147, 153, 155fsump1 15755 . . . . . . . . . 10 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((1 BernPoly 𝑋) / 3))))
15750, 48eqeltrdi 2834 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) ∈ ℂ)
15842fsum1 15746 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 4)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
15911, 157, 158sylancr 585 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
160159, 50eqtrd 2766 . . . . . . . . . . 11 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 / 4))
161160, 76oveq12d 7434 . . . . . . . . . 10 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((1 BernPoly 𝑋) / 3))) = ((1 / 4) + (𝑋 − (1 / 2))))
162156, 161eqtrd 2766 . . . . . . . . 9 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = ((1 / 4) + (𝑋 − (1 / 2))))
163143, 162eqtr3id 2780 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = ((1 / 4) + (𝑋 − (1 / 2))))
164163oveq1d 7431 . . . . . . 7 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((1 / 4) + (𝑋 − (1 / 2))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))))
165 addcl 11231 . . . . . . . . 9 (((1 / 4) ∈ ℂ ∧ (𝑋 − (1 / 2)) ∈ ℂ) → ((1 / 4) + (𝑋 − (1 / 2))) ∈ ℂ)
16648, 71, 165sylancr 585 . . . . . . . 8 (𝑋 ∈ ℂ → ((1 / 4) + (𝑋 − (1 / 2))) ∈ ℂ)
167166, 131, 133addsub12d 11635 . . . . . . 7 (𝑋 ∈ ℂ → (((1 / 4) + (𝑋 − (1 / 2))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))))
168164, 167eqtrd 2766 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))))
169133, 166negsubdi2d 11628 . . . . . . . 8 (𝑋 ∈ ℂ → -(((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6)))))
170 subdi 11688 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((3 / 2) · (𝑋 − (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
171108, 118, 170mp3an13 1449 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋 − (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
172 addsub12 11514 . . . . . . . . . . . 12 (((1 / 4) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 4) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 4) − (1 / 2))))
17348, 69, 172mp3an13 1449 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((1 / 4) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 4) − (1 / 2))))
174171, 173oveq12d 7434 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = ((((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
175 mulcl 11233 . . . . . . . . . . . . 13 (((3 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((3 / 2) · 𝑋) ∈ ℂ)
176108, 175mpan 688 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · 𝑋) ∈ ℂ)
177108, 118mulcli 11262 . . . . . . . . . . . 12 ((3 / 2) · (1 / 6)) ∈ ℂ
178 negsub 11549 . . . . . . . . . . . 12 ((((3 / 2) · 𝑋) ∈ ℂ ∧ ((3 / 2) · (1 / 6)) ∈ ℂ) → (((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
179176, 177, 178sylancl 584 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
180179oveq1d 7431 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))) = ((((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
18169, 48negsubdi2i 11587 . . . . . . . . . . . . . 14 -((1 / 2) − (1 / 4)) = ((1 / 4) − (1 / 2))
18285, 35, 85mul12i 11450 . . . . . . . . . . . . . . . . . . 19 (2 · (3 · 2)) = (3 · (2 · 2))
183 3t2e6 12424 . . . . . . . . . . . . . . . . . . . 20 (3 · 2) = 6
184183oveq2i 7427 . . . . . . . . . . . . . . . . . . 19 (2 · (3 · 2)) = (2 · 6)
185 2t2e4 12422 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
186185oveq2i 7427 . . . . . . . . . . . . . . . . . . 19 (3 · (2 · 2)) = (3 · 4)
187182, 184, 1863eqtr3i 2762 . . . . . . . . . . . . . . . . . 18 (2 · 6) = (3 · 4)
188187oveq2i 7427 . . . . . . . . . . . . . . . . 17 ((3 · 1) / (2 · 6)) = ((3 · 1) / (3 · 4))
18946, 47pm3.2i 469 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℂ ∧ 4 ≠ 0)
19035, 72pm3.2i 469 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℂ ∧ 3 ≠ 0)
191 divcan5 11961 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 · 1) / (3 · 4)) = (1 / 4))
19260, 189, 190, 191mp3an 1458 . . . . . . . . . . . . . . . . 17 ((3 · 1) / (3 · 4)) = (1 / 4)
193188, 192eqtri 2754 . . . . . . . . . . . . . . . 16 ((3 · 1) / (2 · 6)) = (1 / 4)
19435, 85, 60, 114, 86, 117divmuldivi 12019 . . . . . . . . . . . . . . . 16 ((3 / 2) · (1 / 6)) = ((3 · 1) / (2 · 6))
195 2t1e2 12421 . . . . . . . . . . . . . . . . . . . 20 (2 · 1) = 2
196195, 5eqtri 2754 . . . . . . . . . . . . . . . . . . 19 (2 · 1) = (1 + 1)
197196, 185oveq12i 7428 . . . . . . . . . . . . . . . . . 18 ((2 · 1) / (2 · 2)) = ((1 + 1) / 4)
198 divcan5 11961 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · 2)) = (1 / 2))
19960, 104, 104, 198mp3an 1458 . . . . . . . . . . . . . . . . . 18 ((2 · 1) / (2 · 2)) = (1 / 2)
20060, 60, 46, 47divdiri 12016 . . . . . . . . . . . . . . . . . 18 ((1 + 1) / 4) = ((1 / 4) + (1 / 4))
201197, 199, 2003eqtr3ri 2763 . . . . . . . . . . . . . . . . 17 ((1 / 4) + (1 / 4)) = (1 / 2)
20269, 48, 48, 201subaddrii 11590 . . . . . . . . . . . . . . . 16 ((1 / 2) − (1 / 4)) = (1 / 4)
203193, 194, 2023eqtr4ri 2765 . . . . . . . . . . . . . . 15 ((1 / 2) − (1 / 4)) = ((3 / 2) · (1 / 6))
204203negeqi 11494 . . . . . . . . . . . . . 14 -((1 / 2) − (1 / 4)) = -((3 / 2) · (1 / 6))
205181, 204eqtr3i 2756 . . . . . . . . . . . . 13 ((1 / 4) − (1 / 2)) = -((3 / 2) · (1 / 6))
20648, 69subcli 11577 . . . . . . . . . . . . . 14 ((1 / 4) − (1 / 2)) ∈ ℂ
207177negcli 11569 . . . . . . . . . . . . . 14 -((3 / 2) · (1 / 6)) ∈ ℂ
208206, 207subeq0i 11581 . . . . . . . . . . . . 13 ((((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6))) = 0 ↔ ((1 / 4) − (1 / 2)) = -((3 / 2) · (1 / 6)))
209205, 208mpbir 230 . . . . . . . . . . . 12 (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6))) = 0
210209oveq2i 7427 . . . . . . . . . . 11 ((((3 / 2) · 𝑋) − 𝑋) − (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6)))) = ((((3 / 2) · 𝑋) − 𝑋) − 0)
211 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
212206a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 4) − (1 / 2)) ∈ ℂ)
213207a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → -((3 / 2) · (1 / 6)) ∈ ℂ)
214176, 211, 212, 213subadd4d 11660 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6)))) = ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
215 subdir 11689 . . . . . . . . . . . . . . 15 (((3 / 2) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (((3 / 2) − 1) · 𝑋) = (((3 / 2) · 𝑋) − (1 · 𝑋)))
216108, 60, 215mp3an12 1448 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) − 1) · 𝑋) = (((3 / 2) · 𝑋) − (1 · 𝑋)))
217 divsubdir 11953 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((3 − 2) / 2) = ((3 / 2) − (2 / 2)))
21835, 85, 104, 217mp3an 1458 . . . . . . . . . . . . . . . . 17 ((3 − 2) / 2) = ((3 / 2) − (2 / 2))
21995oveq1i 7426 . . . . . . . . . . . . . . . . 17 ((3 − 2) / 2) = (1 / 2)
220 2div2e1 12399 . . . . . . . . . . . . . . . . . 18 (2 / 2) = 1
221220oveq2i 7427 . . . . . . . . . . . . . . . . 17 ((3 / 2) − (2 / 2)) = ((3 / 2) − 1)
222218, 219, 2213eqtr3ri 2763 . . . . . . . . . . . . . . . 16 ((3 / 2) − 1) = (1 / 2)
223222oveq1i 7426 . . . . . . . . . . . . . . 15 (((3 / 2) − 1) · 𝑋) = ((1 / 2) · 𝑋)
224223a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) − 1) · 𝑋) = ((1 / 2) · 𝑋))
225 mullid 11254 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (1 · 𝑋) = 𝑋)
226225oveq2d 7432 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) − (1 · 𝑋)) = (((3 / 2) · 𝑋) − 𝑋))
227216, 224, 2263eqtr3rd 2775 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) − 𝑋) = ((1 / 2) · 𝑋))
228227oveq1d 7431 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − 0) = (((1 / 2) · 𝑋) − 0))
229 mulcl 11233 . . . . . . . . . . . . . 14 (((1 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((1 / 2) · 𝑋) ∈ ℂ)
23069, 229mpan 688 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 2) · 𝑋) ∈ ℂ)
231230subid1d 11601 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (((1 / 2) · 𝑋) − 0) = ((1 / 2) · 𝑋))
232228, 231eqtrd 2766 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − 0) = ((1 / 2) · 𝑋))
233210, 214, 2323eqtr3a 2790 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))) = ((1 / 2) · 𝑋))
234174, 180, 2333eqtr2d 2772 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = ((1 / 2) · 𝑋))
235234negeqd 11495 . . . . . . . 8 (𝑋 ∈ ℂ → -(((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = -((1 / 2) · 𝑋))
236169, 235eqtr3d 2768 . . . . . . 7 (𝑋 ∈ ℂ → (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6)))) = -((1 / 2) · 𝑋))
237236oveq2d 7432 . . . . . 6 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + -((1 / 2) · 𝑋)))
238131, 230negsubd 11618 . . . . . 6 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) + -((1 / 2) · 𝑋)) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
239168, 237, 2383eqtrd 2770 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
240141, 142, 2393eqtrd 2770 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
2418, 240eqtrid 2778 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
242241oveq2d 7432 . 2 (𝑋 ∈ ℂ → ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))) = ((𝑋↑3) − (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋))))
243 expcl 14093 . . . 4 ((𝑋 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑋↑3) ∈ ℂ)
2441, 243mpan2 689 . . 3 (𝑋 ∈ ℂ → (𝑋↑3) ∈ ℂ)
245244, 131, 230subsubd 11640 . 2 (𝑋 ∈ ℂ → ((𝑋↑3) − (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋))) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
2463, 242, 2453eqtrd 2770 1 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3o 1083   = wceq 1534  wcel 2099  wne 2930  cun 3944  {csn 4623  {cpr 4625  {ctp 4627  cfv 6546  (class class class)co 7416  cc 11147  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154  cmin 11485  -cneg 11486   / cdiv 11912  2c2 12313  3c3 12314  4c4 12315  6c6 12317  0cn0 12518  cz 12604  cuz 12868  ...cfz 13532  cexp 14075  Ccbc 14314  Σcsu 15685   BernPoly cbp 16043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-fz 13533  df-fzo 13676  df-seq 14016  df-exp 14076  df-fac 14286  df-bc 14315  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485  df-sum 15686  df-bpoly 16044
This theorem is referenced by:  bpoly4  16056
  Copyright terms: Public domain W3C validator