MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly3 Structured version   Visualization version   GIF version

Theorem bpoly3 16094
Description: The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly3 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))

Proof of Theorem bpoly3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 3nn0 12544 . . 3 3 ∈ ℕ0
2 bpolyval 16085 . . 3 ((3 ∈ ℕ0𝑋 ∈ ℂ) → (3 BernPoly 𝑋) = ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))))
31, 2mpan 690 . 2 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))))
4 3m1e2 12394 . . . . . . 7 (3 − 1) = 2
5 df-2 12329 . . . . . . 7 2 = (1 + 1)
64, 5eqtri 2765 . . . . . 6 (3 − 1) = (1 + 1)
76oveq2i 7442 . . . . 5 (0...(3 − 1)) = (0...(1 + 1))
87sumeq1i 15733 . . . 4 Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))
9 1eluzge0 12934 . . . . . . 7 1 ∈ (ℤ‘0)
109a1i 11 . . . . . 6 (𝑋 ∈ ℂ → 1 ∈ (ℤ‘0))
11 0z 12624 . . . . . . . . . . . . 13 0 ∈ ℤ
12 fzpr 13619 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1311, 12ax-mp 5 . . . . . . . . . . . 12 (0...(0 + 1)) = {0, (0 + 1)}
14 0p1e1 12388 . . . . . . . . . . . . 13 (0 + 1) = 1
1514oveq2i 7442 . . . . . . . . . . . 12 (0...(0 + 1)) = (0...1)
1614preq2i 4737 . . . . . . . . . . . 12 {0, (0 + 1)} = {0, 1}
1713, 15, 163eqtr3ri 2774 . . . . . . . . . . 11 {0, 1} = (0...1)
185sneqi 4637 . . . . . . . . . . 11 {2} = {(1 + 1)}
1917, 18uneq12i 4166 . . . . . . . . . 10 ({0, 1} ∪ {2}) = ((0...1) ∪ {(1 + 1)})
20 df-tp 4631 . . . . . . . . . 10 {0, 1, 2} = ({0, 1} ∪ {2})
21 fzsuc 13611 . . . . . . . . . . 11 (1 ∈ (ℤ‘0) → (0...(1 + 1)) = ((0...1) ∪ {(1 + 1)}))
229, 21ax-mp 5 . . . . . . . . . 10 (0...(1 + 1)) = ((0...1) ∪ {(1 + 1)})
2319, 20, 223eqtr4ri 2776 . . . . . . . . 9 (0...(1 + 1)) = {0, 1, 2}
2423eleq2i 2833 . . . . . . . 8 (𝑘 ∈ (0...(1 + 1)) ↔ 𝑘 ∈ {0, 1, 2})
25 vex 3484 . . . . . . . . 9 𝑘 ∈ V
2625eltp 4689 . . . . . . . 8 (𝑘 ∈ {0, 1, 2} ↔ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2))
2724, 26bitri 275 . . . . . . 7 (𝑘 ∈ (0...(1 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2))
28 oveq2 7439 . . . . . . . . . . . 12 (𝑘 = 0 → (3C𝑘) = (3C0))
29 bcn0 14349 . . . . . . . . . . . . 13 (3 ∈ ℕ0 → (3C0) = 1)
301, 29ax-mp 5 . . . . . . . . . . . 12 (3C0) = 1
3128, 30eqtrdi 2793 . . . . . . . . . . 11 (𝑘 = 0 → (3C𝑘) = 1)
32 oveq1 7438 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
33 oveq2 7439 . . . . . . . . . . . . . 14 (𝑘 = 0 → (3 − 𝑘) = (3 − 0))
3433oveq1d 7446 . . . . . . . . . . . . 13 (𝑘 = 0 → ((3 − 𝑘) + 1) = ((3 − 0) + 1))
35 3cn 12347 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
3635subid1i 11581 . . . . . . . . . . . . . . 15 (3 − 0) = 3
3736oveq1i 7441 . . . . . . . . . . . . . 14 ((3 − 0) + 1) = (3 + 1)
38 df-4 12331 . . . . . . . . . . . . . 14 4 = (3 + 1)
3937, 38eqtr4i 2768 . . . . . . . . . . . . 13 ((3 − 0) + 1) = 4
4034, 39eqtrdi 2793 . . . . . . . . . . . 12 (𝑘 = 0 → ((3 − 𝑘) + 1) = 4)
4132, 40oveq12d 7449 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 4))
4231, 41oveq12d 7449 . . . . . . . . . 10 (𝑘 = 0 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
43 bpoly0 16086 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
4443oveq1d 7446 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 4) = (1 / 4))
4544oveq2d 7447 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) = (1 · (1 / 4)))
46 4cn 12351 . . . . . . . . . . . . 13 4 ∈ ℂ
47 4ne0 12374 . . . . . . . . . . . . 13 4 ≠ 0
4846, 47reccli 11997 . . . . . . . . . . . 12 (1 / 4) ∈ ℂ
4948mullidi 11266 . . . . . . . . . . 11 (1 · (1 / 4)) = (1 / 4)
5045, 49eqtrdi 2793 . . . . . . . . . 10 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) = (1 / 4))
5142, 50sylan9eqr 2799 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 / 4))
5251, 48eqeltrdi 2849 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
53 oveq2 7439 . . . . . . . . . . . 12 (𝑘 = 1 → (3C𝑘) = (3C1))
54 bcn1 14352 . . . . . . . . . . . . 13 (3 ∈ ℕ0 → (3C1) = 3)
551, 54ax-mp 5 . . . . . . . . . . . 12 (3C1) = 3
5653, 55eqtrdi 2793 . . . . . . . . . . 11 (𝑘 = 1 → (3C𝑘) = 3)
57 oveq1 7438 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
58 oveq2 7439 . . . . . . . . . . . . . 14 (𝑘 = 1 → (3 − 𝑘) = (3 − 1))
5958oveq1d 7446 . . . . . . . . . . . . 13 (𝑘 = 1 → ((3 − 𝑘) + 1) = ((3 − 1) + 1))
60 ax-1cn 11213 . . . . . . . . . . . . . 14 1 ∈ ℂ
61 npcan 11517 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ 1 ∈ ℂ) → ((3 − 1) + 1) = 3)
6235, 60, 61mp2an 692 . . . . . . . . . . . . 13 ((3 − 1) + 1) = 3
6359, 62eqtrdi 2793 . . . . . . . . . . . 12 (𝑘 = 1 → ((3 − 𝑘) + 1) = 3)
6457, 63oveq12d 7449 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 3))
6556, 64oveq12d 7449 . . . . . . . . . 10 (𝑘 = 1 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((1 BernPoly 𝑋) / 3)))
66 bpoly1 16087 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6766oveq1d 7446 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 3) = ((𝑋 − (1 / 2)) / 3))
6867oveq2d 7447 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((1 BernPoly 𝑋) / 3)) = (3 · ((𝑋 − (1 / 2)) / 3)))
69 halfcn 12481 . . . . . . . . . . . . 13 (1 / 2) ∈ ℂ
70 subcl 11507 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
7169, 70mpan2 691 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
72 3ne0 12372 . . . . . . . . . . . . 13 3 ≠ 0
73 divcan2 11930 . . . . . . . . . . . . 13 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7435, 72, 73mp3an23 1455 . . . . . . . . . . . 12 ((𝑋 − (1 / 2)) ∈ ℂ → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7571, 74syl 17 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7668, 75eqtrd 2777 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · ((1 BernPoly 𝑋) / 3)) = (𝑋 − (1 / 2)))
7765, 76sylan9eqr 2799 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7871adantr 480 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → (𝑋 − (1 / 2)) ∈ ℂ)
7977, 78eqeltrd 2841 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
80 oveq2 7439 . . . . . . . . . . . 12 (𝑘 = 2 → (3C𝑘) = (3C2))
81 bcn2 14358 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (3C2) = ((3 · (3 − 1)) / 2))
821, 81ax-mp 5 . . . . . . . . . . . . 13 (3C2) = ((3 · (3 − 1)) / 2)
834oveq2i 7442 . . . . . . . . . . . . . . 15 (3 · (3 − 1)) = (3 · 2)
8483oveq1i 7441 . . . . . . . . . . . . . 14 ((3 · (3 − 1)) / 2) = ((3 · 2) / 2)
85 2cn 12341 . . . . . . . . . . . . . . 15 2 ∈ ℂ
86 2ne0 12370 . . . . . . . . . . . . . . 15 2 ≠ 0
8735, 85, 86divcan4i 12014 . . . . . . . . . . . . . 14 ((3 · 2) / 2) = 3
8884, 87eqtri 2765 . . . . . . . . . . . . 13 ((3 · (3 − 1)) / 2) = 3
8982, 88eqtri 2765 . . . . . . . . . . . 12 (3C2) = 3
9080, 89eqtrdi 2793 . . . . . . . . . . 11 (𝑘 = 2 → (3C𝑘) = 3)
91 oveq1 7438 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 BernPoly 𝑋) = (2 BernPoly 𝑋))
92 oveq2 7439 . . . . . . . . . . . . . 14 (𝑘 = 2 → (3 − 𝑘) = (3 − 2))
9392oveq1d 7446 . . . . . . . . . . . . 13 (𝑘 = 2 → ((3 − 𝑘) + 1) = ((3 − 2) + 1))
94 2p1e3 12408 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
9535, 85, 60, 94subaddrii 11598 . . . . . . . . . . . . . . 15 (3 − 2) = 1
9695oveq1i 7441 . . . . . . . . . . . . . 14 ((3 − 2) + 1) = (1 + 1)
9796, 5eqtr4i 2768 . . . . . . . . . . . . 13 ((3 − 2) + 1) = 2
9893, 97eqtrdi 2793 . . . . . . . . . . . 12 (𝑘 = 2 → ((3 − 𝑘) + 1) = 2)
9991, 98oveq12d 7449 . . . . . . . . . . 11 (𝑘 = 2 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((2 BernPoly 𝑋) / 2))
10090, 99oveq12d 7449 . . . . . . . . . 10 (𝑘 = 2 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((2 BernPoly 𝑋) / 2)))
101 2nn0 12543 . . . . . . . . . . . . 13 2 ∈ ℕ0
102 bpolycl 16088 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) ∈ ℂ)
103101, 102mpan 690 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) ∈ ℂ)
104 2cnne0 12476 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
105 div12 11944 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (2 BernPoly 𝑋) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
10635, 104, 105mp3an13 1454 . . . . . . . . . . . 12 ((2 BernPoly 𝑋) ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
107103, 106syl 17 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
10835, 85, 86divcli 12009 . . . . . . . . . . . 12 (3 / 2) ∈ ℂ
109 mulcom 11241 . . . . . . . . . . . 12 (((2 BernPoly 𝑋) ∈ ℂ ∧ (3 / 2) ∈ ℂ) → ((2 BernPoly 𝑋) · (3 / 2)) = ((3 / 2) · (2 BernPoly 𝑋)))
110103, 108, 109sylancl 586 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · (3 / 2)) = ((3 / 2) · (2 BernPoly 𝑋)))
111 bpoly2 16093 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
112111oveq2d 7447 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · (2 BernPoly 𝑋)) = ((3 / 2) · (((𝑋↑2) − 𝑋) + (1 / 6))))
113 sqcl 14158 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
114 6cn 12357 . . . . . . . . . . . . . . . 16 6 ∈ ℂ
115 6re 12356 . . . . . . . . . . . . . . . . 17 6 ∈ ℝ
116 6pos 12376 . . . . . . . . . . . . . . . . 17 0 < 6
117115, 116gt0ne0ii 11799 . . . . . . . . . . . . . . . 16 6 ≠ 0
118114, 117reccli 11997 . . . . . . . . . . . . . . 15 (1 / 6) ∈ ℂ
119 subsub 11539 . . . . . . . . . . . . . . 15 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
120118, 119mp3an3 1452 . . . . . . . . . . . . . 14 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
121113, 120mpancom 688 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
122121oveq2d 7447 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = ((3 / 2) · (((𝑋↑2) − 𝑋) + (1 / 6))))
123 subcl 11507 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 − (1 / 6)) ∈ ℂ)
124118, 123mpan2 691 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 6)) ∈ ℂ)
125 subdi 11696 . . . . . . . . . . . . 13 (((3 / 2) ∈ ℂ ∧ (𝑋↑2) ∈ ℂ ∧ (𝑋 − (1 / 6)) ∈ ℂ) → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
126108, 113, 124, 125mp3an2i 1468 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
127112, 122, 1263eqtr2d 2783 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (2 BernPoly 𝑋)) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
128107, 110, 1273eqtrd 2781 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
129100, 128sylan9eqr 2799 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
130 mulcl 11239 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ (𝑋↑2) ∈ ℂ) → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
131108, 113, 130sylancr 587 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
132 mulcl 11239 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ (𝑋 − (1 / 6)) ∈ ℂ) → ((3 / 2) · (𝑋 − (1 / 6))) ∈ ℂ)
133108, 124, 132sylancr 587 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋 − (1 / 6))) ∈ ℂ)
134131, 133subcld 11620 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))) ∈ ℂ)
135134adantr 480 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))) ∈ ℂ)
136129, 135eqeltrd 2841 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
13752, 79, 1363jaodan 1433 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2)) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
13827, 137sylan2b 594 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(1 + 1))) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
1395eqeq2i 2750 . . . . . . 7 (𝑘 = 2 ↔ 𝑘 = (1 + 1))
140139, 100sylbir 235 . . . . . 6 (𝑘 = (1 + 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((2 BernPoly 𝑋) / 2)))
14110, 138, 140fsump1 15792 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((2 BernPoly 𝑋) / 2))))
142128oveq2d 7447 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((2 BernPoly 𝑋) / 2))) = (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))))
14315sumeq1i 15733 . . . . . . . . 9 Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))
144 0nn0 12541 . . . . . . . . . . . . 13 0 ∈ ℕ0
145 nn0uz 12920 . . . . . . . . . . . . 13 0 = (ℤ‘0)
146144, 145eleqtri 2839 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
147146a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
14813, 16eqtri 2765 . . . . . . . . . . . . . 14 (0...(0 + 1)) = {0, 1}
149148eleq2i 2833 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, 1})
15025elpr 4650 . . . . . . . . . . . . 13 (𝑘 ∈ {0, 1} ↔ (𝑘 = 0 ∨ 𝑘 = 1))
151149, 150bitri 275 . . . . . . . . . . . 12 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = 1))
15252, 79jaodan 960 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = 1)) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
153151, 152sylan2b 594 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
15414eqeq2i 2750 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
155154, 65sylbi 217 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((1 BernPoly 𝑋) / 3)))
156147, 153, 155fsump1 15792 . . . . . . . . . 10 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((1 BernPoly 𝑋) / 3))))
15750, 48eqeltrdi 2849 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) ∈ ℂ)
15842fsum1 15783 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 4)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
15911, 157, 158sylancr 587 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
160159, 50eqtrd 2777 . . . . . . . . . . 11 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 / 4))
161160, 76oveq12d 7449 . . . . . . . . . 10 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((1 BernPoly 𝑋) / 3))) = ((1 / 4) + (𝑋 − (1 / 2))))
162156, 161eqtrd 2777 . . . . . . . . 9 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = ((1 / 4) + (𝑋 − (1 / 2))))
163143, 162eqtr3id 2791 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = ((1 / 4) + (𝑋 − (1 / 2))))
164163oveq1d 7446 . . . . . . 7 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((1 / 4) + (𝑋 − (1 / 2))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))))
165 addcl 11237 . . . . . . . . 9 (((1 / 4) ∈ ℂ ∧ (𝑋 − (1 / 2)) ∈ ℂ) → ((1 / 4) + (𝑋 − (1 / 2))) ∈ ℂ)
16648, 71, 165sylancr 587 . . . . . . . 8 (𝑋 ∈ ℂ → ((1 / 4) + (𝑋 − (1 / 2))) ∈ ℂ)
167166, 131, 133addsub12d 11643 . . . . . . 7 (𝑋 ∈ ℂ → (((1 / 4) + (𝑋 − (1 / 2))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))))
168164, 167eqtrd 2777 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))))
169133, 166negsubdi2d 11636 . . . . . . . 8 (𝑋 ∈ ℂ → -(((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6)))))
170 subdi 11696 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((3 / 2) · (𝑋 − (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
171108, 118, 170mp3an13 1454 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋 − (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
172 addsub12 11521 . . . . . . . . . . . 12 (((1 / 4) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 4) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 4) − (1 / 2))))
17348, 69, 172mp3an13 1454 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((1 / 4) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 4) − (1 / 2))))
174171, 173oveq12d 7449 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = ((((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
175 mulcl 11239 . . . . . . . . . . . . 13 (((3 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((3 / 2) · 𝑋) ∈ ℂ)
176108, 175mpan 690 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · 𝑋) ∈ ℂ)
177108, 118mulcli 11268 . . . . . . . . . . . 12 ((3 / 2) · (1 / 6)) ∈ ℂ
178 negsub 11557 . . . . . . . . . . . 12 ((((3 / 2) · 𝑋) ∈ ℂ ∧ ((3 / 2) · (1 / 6)) ∈ ℂ) → (((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
179176, 177, 178sylancl 586 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
180179oveq1d 7446 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))) = ((((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
18169, 48negsubdi2i 11595 . . . . . . . . . . . . . 14 -((1 / 2) − (1 / 4)) = ((1 / 4) − (1 / 2))
18285, 35, 85mul12i 11456 . . . . . . . . . . . . . . . . . . 19 (2 · (3 · 2)) = (3 · (2 · 2))
183 3t2e6 12432 . . . . . . . . . . . . . . . . . . . 20 (3 · 2) = 6
184183oveq2i 7442 . . . . . . . . . . . . . . . . . . 19 (2 · (3 · 2)) = (2 · 6)
185 2t2e4 12430 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
186185oveq2i 7442 . . . . . . . . . . . . . . . . . . 19 (3 · (2 · 2)) = (3 · 4)
187182, 184, 1863eqtr3i 2773 . . . . . . . . . . . . . . . . . 18 (2 · 6) = (3 · 4)
188187oveq2i 7442 . . . . . . . . . . . . . . . . 17 ((3 · 1) / (2 · 6)) = ((3 · 1) / (3 · 4))
18946, 47pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℂ ∧ 4 ≠ 0)
19035, 72pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℂ ∧ 3 ≠ 0)
191 divcan5 11969 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 · 1) / (3 · 4)) = (1 / 4))
19260, 189, 190, 191mp3an 1463 . . . . . . . . . . . . . . . . 17 ((3 · 1) / (3 · 4)) = (1 / 4)
193188, 192eqtri 2765 . . . . . . . . . . . . . . . 16 ((3 · 1) / (2 · 6)) = (1 / 4)
19435, 85, 60, 114, 86, 117divmuldivi 12027 . . . . . . . . . . . . . . . 16 ((3 / 2) · (1 / 6)) = ((3 · 1) / (2 · 6))
195 2t1e2 12429 . . . . . . . . . . . . . . . . . . . 20 (2 · 1) = 2
196195, 5eqtri 2765 . . . . . . . . . . . . . . . . . . 19 (2 · 1) = (1 + 1)
197196, 185oveq12i 7443 . . . . . . . . . . . . . . . . . 18 ((2 · 1) / (2 · 2)) = ((1 + 1) / 4)
198 divcan5 11969 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · 2)) = (1 / 2))
19960, 104, 104, 198mp3an 1463 . . . . . . . . . . . . . . . . . 18 ((2 · 1) / (2 · 2)) = (1 / 2)
20060, 60, 46, 47divdiri 12024 . . . . . . . . . . . . . . . . . 18 ((1 + 1) / 4) = ((1 / 4) + (1 / 4))
201197, 199, 2003eqtr3ri 2774 . . . . . . . . . . . . . . . . 17 ((1 / 4) + (1 / 4)) = (1 / 2)
20269, 48, 48, 201subaddrii 11598 . . . . . . . . . . . . . . . 16 ((1 / 2) − (1 / 4)) = (1 / 4)
203193, 194, 2023eqtr4ri 2776 . . . . . . . . . . . . . . 15 ((1 / 2) − (1 / 4)) = ((3 / 2) · (1 / 6))
204203negeqi 11501 . . . . . . . . . . . . . 14 -((1 / 2) − (1 / 4)) = -((3 / 2) · (1 / 6))
205181, 204eqtr3i 2767 . . . . . . . . . . . . 13 ((1 / 4) − (1 / 2)) = -((3 / 2) · (1 / 6))
20648, 69subcli 11585 . . . . . . . . . . . . . 14 ((1 / 4) − (1 / 2)) ∈ ℂ
207177negcli 11577 . . . . . . . . . . . . . 14 -((3 / 2) · (1 / 6)) ∈ ℂ
208206, 207subeq0i 11589 . . . . . . . . . . . . 13 ((((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6))) = 0 ↔ ((1 / 4) − (1 / 2)) = -((3 / 2) · (1 / 6)))
209205, 208mpbir 231 . . . . . . . . . . . 12 (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6))) = 0
210209oveq2i 7442 . . . . . . . . . . 11 ((((3 / 2) · 𝑋) − 𝑋) − (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6)))) = ((((3 / 2) · 𝑋) − 𝑋) − 0)
211 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
212206a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 4) − (1 / 2)) ∈ ℂ)
213207a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → -((3 / 2) · (1 / 6)) ∈ ℂ)
214176, 211, 212, 213subadd4d 11668 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6)))) = ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
215 subdir 11697 . . . . . . . . . . . . . . 15 (((3 / 2) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (((3 / 2) − 1) · 𝑋) = (((3 / 2) · 𝑋) − (1 · 𝑋)))
216108, 60, 215mp3an12 1453 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) − 1) · 𝑋) = (((3 / 2) · 𝑋) − (1 · 𝑋)))
217 divsubdir 11961 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((3 − 2) / 2) = ((3 / 2) − (2 / 2)))
21835, 85, 104, 217mp3an 1463 . . . . . . . . . . . . . . . . 17 ((3 − 2) / 2) = ((3 / 2) − (2 / 2))
21995oveq1i 7441 . . . . . . . . . . . . . . . . 17 ((3 − 2) / 2) = (1 / 2)
220 2div2e1 12407 . . . . . . . . . . . . . . . . . 18 (2 / 2) = 1
221220oveq2i 7442 . . . . . . . . . . . . . . . . 17 ((3 / 2) − (2 / 2)) = ((3 / 2) − 1)
222218, 219, 2213eqtr3ri 2774 . . . . . . . . . . . . . . . 16 ((3 / 2) − 1) = (1 / 2)
223222oveq1i 7441 . . . . . . . . . . . . . . 15 (((3 / 2) − 1) · 𝑋) = ((1 / 2) · 𝑋)
224223a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) − 1) · 𝑋) = ((1 / 2) · 𝑋))
225 mullid 11260 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (1 · 𝑋) = 𝑋)
226225oveq2d 7447 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) − (1 · 𝑋)) = (((3 / 2) · 𝑋) − 𝑋))
227216, 224, 2263eqtr3rd 2786 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) − 𝑋) = ((1 / 2) · 𝑋))
228227oveq1d 7446 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − 0) = (((1 / 2) · 𝑋) − 0))
229 mulcl 11239 . . . . . . . . . . . . . 14 (((1 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((1 / 2) · 𝑋) ∈ ℂ)
23069, 229mpan 690 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 2) · 𝑋) ∈ ℂ)
231230subid1d 11609 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (((1 / 2) · 𝑋) − 0) = ((1 / 2) · 𝑋))
232228, 231eqtrd 2777 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − 0) = ((1 / 2) · 𝑋))
233210, 214, 2323eqtr3a 2801 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))) = ((1 / 2) · 𝑋))
234174, 180, 2333eqtr2d 2783 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = ((1 / 2) · 𝑋))
235234negeqd 11502 . . . . . . . 8 (𝑋 ∈ ℂ → -(((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = -((1 / 2) · 𝑋))
236169, 235eqtr3d 2779 . . . . . . 7 (𝑋 ∈ ℂ → (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6)))) = -((1 / 2) · 𝑋))
237236oveq2d 7447 . . . . . 6 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + -((1 / 2) · 𝑋)))
238131, 230negsubd 11626 . . . . . 6 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) + -((1 / 2) · 𝑋)) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
239168, 237, 2383eqtrd 2781 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
240141, 142, 2393eqtrd 2781 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
2418, 240eqtrid 2789 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
242241oveq2d 7447 . 2 (𝑋 ∈ ℂ → ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))) = ((𝑋↑3) − (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋))))
243 expcl 14120 . . . 4 ((𝑋 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑋↑3) ∈ ℂ)
2441, 243mpan2 691 . . 3 (𝑋 ∈ ℂ → (𝑋↑3) ∈ ℂ)
245244, 131, 230subsubd 11648 . 2 (𝑋 ∈ ℂ → ((𝑋↑3) − (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋))) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
2463, 242, 2453eqtrd 2781 1 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3o 1086   = wceq 1540  wcel 2108  wne 2940  cun 3949  {csn 4626  {cpr 4628  {ctp 4630  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  3c3 12322  4c4 12323  6c6 12325  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  cexp 14102  Ccbc 14341  Σcsu 15722   BernPoly cbp 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-bpoly 16083
This theorem is referenced by:  bpoly4  16095
  Copyright terms: Public domain W3C validator