MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly3 Structured version   Visualization version   GIF version

Theorem bpoly3 15768
Description: The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly3 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))

Proof of Theorem bpoly3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 3nn0 12251 . . 3 3 ∈ ℕ0
2 bpolyval 15759 . . 3 ((3 ∈ ℕ0𝑋 ∈ ℂ) → (3 BernPoly 𝑋) = ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))))
31, 2mpan 687 . 2 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))))
4 3m1e2 12101 . . . . . . 7 (3 − 1) = 2
5 df-2 12036 . . . . . . 7 2 = (1 + 1)
64, 5eqtri 2766 . . . . . 6 (3 − 1) = (1 + 1)
76oveq2i 7286 . . . . 5 (0...(3 − 1)) = (0...(1 + 1))
87sumeq1i 15410 . . . 4 Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))
9 1eluzge0 12632 . . . . . . 7 1 ∈ (ℤ‘0)
109a1i 11 . . . . . 6 (𝑋 ∈ ℂ → 1 ∈ (ℤ‘0))
11 0z 12330 . . . . . . . . . . . . 13 0 ∈ ℤ
12 fzpr 13311 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1311, 12ax-mp 5 . . . . . . . . . . . 12 (0...(0 + 1)) = {0, (0 + 1)}
14 0p1e1 12095 . . . . . . . . . . . . 13 (0 + 1) = 1
1514oveq2i 7286 . . . . . . . . . . . 12 (0...(0 + 1)) = (0...1)
1614preq2i 4673 . . . . . . . . . . . 12 {0, (0 + 1)} = {0, 1}
1713, 15, 163eqtr3ri 2775 . . . . . . . . . . 11 {0, 1} = (0...1)
185sneqi 4572 . . . . . . . . . . 11 {2} = {(1 + 1)}
1917, 18uneq12i 4095 . . . . . . . . . 10 ({0, 1} ∪ {2}) = ((0...1) ∪ {(1 + 1)})
20 df-tp 4566 . . . . . . . . . 10 {0, 1, 2} = ({0, 1} ∪ {2})
21 fzsuc 13303 . . . . . . . . . . 11 (1 ∈ (ℤ‘0) → (0...(1 + 1)) = ((0...1) ∪ {(1 + 1)}))
229, 21ax-mp 5 . . . . . . . . . 10 (0...(1 + 1)) = ((0...1) ∪ {(1 + 1)})
2319, 20, 223eqtr4ri 2777 . . . . . . . . 9 (0...(1 + 1)) = {0, 1, 2}
2423eleq2i 2830 . . . . . . . 8 (𝑘 ∈ (0...(1 + 1)) ↔ 𝑘 ∈ {0, 1, 2})
25 vex 3436 . . . . . . . . 9 𝑘 ∈ V
2625eltp 4624 . . . . . . . 8 (𝑘 ∈ {0, 1, 2} ↔ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2))
2724, 26bitri 274 . . . . . . 7 (𝑘 ∈ (0...(1 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2))
28 oveq2 7283 . . . . . . . . . . . 12 (𝑘 = 0 → (3C𝑘) = (3C0))
29 bcn0 14024 . . . . . . . . . . . . 13 (3 ∈ ℕ0 → (3C0) = 1)
301, 29ax-mp 5 . . . . . . . . . . . 12 (3C0) = 1
3128, 30eqtrdi 2794 . . . . . . . . . . 11 (𝑘 = 0 → (3C𝑘) = 1)
32 oveq1 7282 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
33 oveq2 7283 . . . . . . . . . . . . . 14 (𝑘 = 0 → (3 − 𝑘) = (3 − 0))
3433oveq1d 7290 . . . . . . . . . . . . 13 (𝑘 = 0 → ((3 − 𝑘) + 1) = ((3 − 0) + 1))
35 3cn 12054 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
3635subid1i 11293 . . . . . . . . . . . . . . 15 (3 − 0) = 3
3736oveq1i 7285 . . . . . . . . . . . . . 14 ((3 − 0) + 1) = (3 + 1)
38 df-4 12038 . . . . . . . . . . . . . 14 4 = (3 + 1)
3937, 38eqtr4i 2769 . . . . . . . . . . . . 13 ((3 − 0) + 1) = 4
4034, 39eqtrdi 2794 . . . . . . . . . . . 12 (𝑘 = 0 → ((3 − 𝑘) + 1) = 4)
4132, 40oveq12d 7293 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 4))
4231, 41oveq12d 7293 . . . . . . . . . 10 (𝑘 = 0 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
43 bpoly0 15760 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
4443oveq1d 7290 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 4) = (1 / 4))
4544oveq2d 7291 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) = (1 · (1 / 4)))
46 4cn 12058 . . . . . . . . . . . . 13 4 ∈ ℂ
47 4ne0 12081 . . . . . . . . . . . . 13 4 ≠ 0
4846, 47reccli 11705 . . . . . . . . . . . 12 (1 / 4) ∈ ℂ
4948mulid2i 10980 . . . . . . . . . . 11 (1 · (1 / 4)) = (1 / 4)
5045, 49eqtrdi 2794 . . . . . . . . . 10 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) = (1 / 4))
5142, 50sylan9eqr 2800 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 / 4))
5251, 48eqeltrdi 2847 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
53 oveq2 7283 . . . . . . . . . . . 12 (𝑘 = 1 → (3C𝑘) = (3C1))
54 bcn1 14027 . . . . . . . . . . . . 13 (3 ∈ ℕ0 → (3C1) = 3)
551, 54ax-mp 5 . . . . . . . . . . . 12 (3C1) = 3
5653, 55eqtrdi 2794 . . . . . . . . . . 11 (𝑘 = 1 → (3C𝑘) = 3)
57 oveq1 7282 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
58 oveq2 7283 . . . . . . . . . . . . . 14 (𝑘 = 1 → (3 − 𝑘) = (3 − 1))
5958oveq1d 7290 . . . . . . . . . . . . 13 (𝑘 = 1 → ((3 − 𝑘) + 1) = ((3 − 1) + 1))
60 ax-1cn 10929 . . . . . . . . . . . . . 14 1 ∈ ℂ
61 npcan 11230 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ 1 ∈ ℂ) → ((3 − 1) + 1) = 3)
6235, 60, 61mp2an 689 . . . . . . . . . . . . 13 ((3 − 1) + 1) = 3
6359, 62eqtrdi 2794 . . . . . . . . . . . 12 (𝑘 = 1 → ((3 − 𝑘) + 1) = 3)
6457, 63oveq12d 7293 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 3))
6556, 64oveq12d 7293 . . . . . . . . . 10 (𝑘 = 1 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((1 BernPoly 𝑋) / 3)))
66 bpoly1 15761 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6766oveq1d 7290 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 3) = ((𝑋 − (1 / 2)) / 3))
6867oveq2d 7291 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((1 BernPoly 𝑋) / 3)) = (3 · ((𝑋 − (1 / 2)) / 3)))
69 halfcn 12188 . . . . . . . . . . . . 13 (1 / 2) ∈ ℂ
70 subcl 11220 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
7169, 70mpan2 688 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
72 3ne0 12079 . . . . . . . . . . . . 13 3 ≠ 0
73 divcan2 11641 . . . . . . . . . . . . 13 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7435, 72, 73mp3an23 1452 . . . . . . . . . . . 12 ((𝑋 − (1 / 2)) ∈ ℂ → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7571, 74syl 17 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7668, 75eqtrd 2778 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · ((1 BernPoly 𝑋) / 3)) = (𝑋 − (1 / 2)))
7765, 76sylan9eqr 2800 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7871adantr 481 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → (𝑋 − (1 / 2)) ∈ ℂ)
7977, 78eqeltrd 2839 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
80 oveq2 7283 . . . . . . . . . . . 12 (𝑘 = 2 → (3C𝑘) = (3C2))
81 bcn2 14033 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (3C2) = ((3 · (3 − 1)) / 2))
821, 81ax-mp 5 . . . . . . . . . . . . 13 (3C2) = ((3 · (3 − 1)) / 2)
834oveq2i 7286 . . . . . . . . . . . . . . 15 (3 · (3 − 1)) = (3 · 2)
8483oveq1i 7285 . . . . . . . . . . . . . 14 ((3 · (3 − 1)) / 2) = ((3 · 2) / 2)
85 2cn 12048 . . . . . . . . . . . . . . 15 2 ∈ ℂ
86 2ne0 12077 . . . . . . . . . . . . . . 15 2 ≠ 0
8735, 85, 86divcan4i 11722 . . . . . . . . . . . . . 14 ((3 · 2) / 2) = 3
8884, 87eqtri 2766 . . . . . . . . . . . . 13 ((3 · (3 − 1)) / 2) = 3
8982, 88eqtri 2766 . . . . . . . . . . . 12 (3C2) = 3
9080, 89eqtrdi 2794 . . . . . . . . . . 11 (𝑘 = 2 → (3C𝑘) = 3)
91 oveq1 7282 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 BernPoly 𝑋) = (2 BernPoly 𝑋))
92 oveq2 7283 . . . . . . . . . . . . . 14 (𝑘 = 2 → (3 − 𝑘) = (3 − 2))
9392oveq1d 7290 . . . . . . . . . . . . 13 (𝑘 = 2 → ((3 − 𝑘) + 1) = ((3 − 2) + 1))
94 2p1e3 12115 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
9535, 85, 60, 94subaddrii 11310 . . . . . . . . . . . . . . 15 (3 − 2) = 1
9695oveq1i 7285 . . . . . . . . . . . . . 14 ((3 − 2) + 1) = (1 + 1)
9796, 5eqtr4i 2769 . . . . . . . . . . . . 13 ((3 − 2) + 1) = 2
9893, 97eqtrdi 2794 . . . . . . . . . . . 12 (𝑘 = 2 → ((3 − 𝑘) + 1) = 2)
9991, 98oveq12d 7293 . . . . . . . . . . 11 (𝑘 = 2 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((2 BernPoly 𝑋) / 2))
10090, 99oveq12d 7293 . . . . . . . . . 10 (𝑘 = 2 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((2 BernPoly 𝑋) / 2)))
101 2nn0 12250 . . . . . . . . . . . . 13 2 ∈ ℕ0
102 bpolycl 15762 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) ∈ ℂ)
103101, 102mpan 687 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) ∈ ℂ)
104 2cnne0 12183 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
105 div12 11655 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (2 BernPoly 𝑋) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
10635, 104, 105mp3an13 1451 . . . . . . . . . . . 12 ((2 BernPoly 𝑋) ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
107103, 106syl 17 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
10835, 85, 86divcli 11717 . . . . . . . . . . . 12 (3 / 2) ∈ ℂ
109 mulcom 10957 . . . . . . . . . . . 12 (((2 BernPoly 𝑋) ∈ ℂ ∧ (3 / 2) ∈ ℂ) → ((2 BernPoly 𝑋) · (3 / 2)) = ((3 / 2) · (2 BernPoly 𝑋)))
110103, 108, 109sylancl 586 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · (3 / 2)) = ((3 / 2) · (2 BernPoly 𝑋)))
111 bpoly2 15767 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
112111oveq2d 7291 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · (2 BernPoly 𝑋)) = ((3 / 2) · (((𝑋↑2) − 𝑋) + (1 / 6))))
113 sqcl 13838 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
114 6cn 12064 . . . . . . . . . . . . . . . 16 6 ∈ ℂ
115 6re 12063 . . . . . . . . . . . . . . . . 17 6 ∈ ℝ
116 6pos 12083 . . . . . . . . . . . . . . . . 17 0 < 6
117115, 116gt0ne0ii 11511 . . . . . . . . . . . . . . . 16 6 ≠ 0
118114, 117reccli 11705 . . . . . . . . . . . . . . 15 (1 / 6) ∈ ℂ
119 subsub 11251 . . . . . . . . . . . . . . 15 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
120118, 119mp3an3 1449 . . . . . . . . . . . . . 14 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
121113, 120mpancom 685 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
122121oveq2d 7291 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = ((3 / 2) · (((𝑋↑2) − 𝑋) + (1 / 6))))
123 subcl 11220 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 − (1 / 6)) ∈ ℂ)
124118, 123mpan2 688 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 6)) ∈ ℂ)
125 subdi 11408 . . . . . . . . . . . . 13 (((3 / 2) ∈ ℂ ∧ (𝑋↑2) ∈ ℂ ∧ (𝑋 − (1 / 6)) ∈ ℂ) → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
126108, 113, 124, 125mp3an2i 1465 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
127112, 122, 1263eqtr2d 2784 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (2 BernPoly 𝑋)) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
128107, 110, 1273eqtrd 2782 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
129100, 128sylan9eqr 2800 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
130 mulcl 10955 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ (𝑋↑2) ∈ ℂ) → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
131108, 113, 130sylancr 587 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
132 mulcl 10955 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ (𝑋 − (1 / 6)) ∈ ℂ) → ((3 / 2) · (𝑋 − (1 / 6))) ∈ ℂ)
133108, 124, 132sylancr 587 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋 − (1 / 6))) ∈ ℂ)
134131, 133subcld 11332 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))) ∈ ℂ)
135134adantr 481 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))) ∈ ℂ)
136129, 135eqeltrd 2839 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
13752, 79, 1363jaodan 1429 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2)) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
13827, 137sylan2b 594 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(1 + 1))) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
1395eqeq2i 2751 . . . . . . 7 (𝑘 = 2 ↔ 𝑘 = (1 + 1))
140139, 100sylbir 234 . . . . . 6 (𝑘 = (1 + 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((2 BernPoly 𝑋) / 2)))
14110, 138, 140fsump1 15468 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((2 BernPoly 𝑋) / 2))))
142128oveq2d 7291 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((2 BernPoly 𝑋) / 2))) = (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))))
14315sumeq1i 15410 . . . . . . . . 9 Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))
144 0nn0 12248 . . . . . . . . . . . . 13 0 ∈ ℕ0
145 nn0uz 12620 . . . . . . . . . . . . 13 0 = (ℤ‘0)
146144, 145eleqtri 2837 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
147146a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
14813, 16eqtri 2766 . . . . . . . . . . . . . 14 (0...(0 + 1)) = {0, 1}
149148eleq2i 2830 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, 1})
15025elpr 4584 . . . . . . . . . . . . 13 (𝑘 ∈ {0, 1} ↔ (𝑘 = 0 ∨ 𝑘 = 1))
151149, 150bitri 274 . . . . . . . . . . . 12 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = 1))
15252, 79jaodan 955 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = 1)) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
153151, 152sylan2b 594 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
15414eqeq2i 2751 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
155154, 65sylbi 216 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((1 BernPoly 𝑋) / 3)))
156147, 153, 155fsump1 15468 . . . . . . . . . 10 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((1 BernPoly 𝑋) / 3))))
15750, 48eqeltrdi 2847 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) ∈ ℂ)
15842fsum1 15459 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 4)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
15911, 157, 158sylancr 587 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
160159, 50eqtrd 2778 . . . . . . . . . . 11 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 / 4))
161160, 76oveq12d 7293 . . . . . . . . . 10 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((1 BernPoly 𝑋) / 3))) = ((1 / 4) + (𝑋 − (1 / 2))))
162156, 161eqtrd 2778 . . . . . . . . 9 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = ((1 / 4) + (𝑋 − (1 / 2))))
163143, 162eqtr3id 2792 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = ((1 / 4) + (𝑋 − (1 / 2))))
164163oveq1d 7290 . . . . . . 7 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((1 / 4) + (𝑋 − (1 / 2))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))))
165 addcl 10953 . . . . . . . . 9 (((1 / 4) ∈ ℂ ∧ (𝑋 − (1 / 2)) ∈ ℂ) → ((1 / 4) + (𝑋 − (1 / 2))) ∈ ℂ)
16648, 71, 165sylancr 587 . . . . . . . 8 (𝑋 ∈ ℂ → ((1 / 4) + (𝑋 − (1 / 2))) ∈ ℂ)
167166, 131, 133addsub12d 11355 . . . . . . 7 (𝑋 ∈ ℂ → (((1 / 4) + (𝑋 − (1 / 2))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))))
168164, 167eqtrd 2778 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))))
169133, 166negsubdi2d 11348 . . . . . . . 8 (𝑋 ∈ ℂ → -(((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6)))))
170 subdi 11408 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((3 / 2) · (𝑋 − (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
171108, 118, 170mp3an13 1451 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋 − (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
172 addsub12 11234 . . . . . . . . . . . 12 (((1 / 4) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 4) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 4) − (1 / 2))))
17348, 69, 172mp3an13 1451 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((1 / 4) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 4) − (1 / 2))))
174171, 173oveq12d 7293 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = ((((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
175 mulcl 10955 . . . . . . . . . . . . 13 (((3 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((3 / 2) · 𝑋) ∈ ℂ)
176108, 175mpan 687 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · 𝑋) ∈ ℂ)
177108, 118mulcli 10982 . . . . . . . . . . . 12 ((3 / 2) · (1 / 6)) ∈ ℂ
178 negsub 11269 . . . . . . . . . . . 12 ((((3 / 2) · 𝑋) ∈ ℂ ∧ ((3 / 2) · (1 / 6)) ∈ ℂ) → (((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
179176, 177, 178sylancl 586 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
180179oveq1d 7290 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))) = ((((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
18169, 48negsubdi2i 11307 . . . . . . . . . . . . . 14 -((1 / 2) − (1 / 4)) = ((1 / 4) − (1 / 2))
18285, 35, 85mul12i 11170 . . . . . . . . . . . . . . . . . . 19 (2 · (3 · 2)) = (3 · (2 · 2))
183 3t2e6 12139 . . . . . . . . . . . . . . . . . . . 20 (3 · 2) = 6
184183oveq2i 7286 . . . . . . . . . . . . . . . . . . 19 (2 · (3 · 2)) = (2 · 6)
185 2t2e4 12137 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
186185oveq2i 7286 . . . . . . . . . . . . . . . . . . 19 (3 · (2 · 2)) = (3 · 4)
187182, 184, 1863eqtr3i 2774 . . . . . . . . . . . . . . . . . 18 (2 · 6) = (3 · 4)
188187oveq2i 7286 . . . . . . . . . . . . . . . . 17 ((3 · 1) / (2 · 6)) = ((3 · 1) / (3 · 4))
18946, 47pm3.2i 471 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℂ ∧ 4 ≠ 0)
19035, 72pm3.2i 471 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℂ ∧ 3 ≠ 0)
191 divcan5 11677 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 · 1) / (3 · 4)) = (1 / 4))
19260, 189, 190, 191mp3an 1460 . . . . . . . . . . . . . . . . 17 ((3 · 1) / (3 · 4)) = (1 / 4)
193188, 192eqtri 2766 . . . . . . . . . . . . . . . 16 ((3 · 1) / (2 · 6)) = (1 / 4)
19435, 85, 60, 114, 86, 117divmuldivi 11735 . . . . . . . . . . . . . . . 16 ((3 / 2) · (1 / 6)) = ((3 · 1) / (2 · 6))
195 2t1e2 12136 . . . . . . . . . . . . . . . . . . . 20 (2 · 1) = 2
196195, 5eqtri 2766 . . . . . . . . . . . . . . . . . . 19 (2 · 1) = (1 + 1)
197196, 185oveq12i 7287 . . . . . . . . . . . . . . . . . 18 ((2 · 1) / (2 · 2)) = ((1 + 1) / 4)
198 divcan5 11677 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · 2)) = (1 / 2))
19960, 104, 104, 198mp3an 1460 . . . . . . . . . . . . . . . . . 18 ((2 · 1) / (2 · 2)) = (1 / 2)
20060, 60, 46, 47divdiri 11732 . . . . . . . . . . . . . . . . . 18 ((1 + 1) / 4) = ((1 / 4) + (1 / 4))
201197, 199, 2003eqtr3ri 2775 . . . . . . . . . . . . . . . . 17 ((1 / 4) + (1 / 4)) = (1 / 2)
20269, 48, 48, 201subaddrii 11310 . . . . . . . . . . . . . . . 16 ((1 / 2) − (1 / 4)) = (1 / 4)
203193, 194, 2023eqtr4ri 2777 . . . . . . . . . . . . . . 15 ((1 / 2) − (1 / 4)) = ((3 / 2) · (1 / 6))
204203negeqi 11214 . . . . . . . . . . . . . 14 -((1 / 2) − (1 / 4)) = -((3 / 2) · (1 / 6))
205181, 204eqtr3i 2768 . . . . . . . . . . . . 13 ((1 / 4) − (1 / 2)) = -((3 / 2) · (1 / 6))
20648, 69subcli 11297 . . . . . . . . . . . . . 14 ((1 / 4) − (1 / 2)) ∈ ℂ
207177negcli 11289 . . . . . . . . . . . . . 14 -((3 / 2) · (1 / 6)) ∈ ℂ
208206, 207subeq0i 11301 . . . . . . . . . . . . 13 ((((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6))) = 0 ↔ ((1 / 4) − (1 / 2)) = -((3 / 2) · (1 / 6)))
209205, 208mpbir 230 . . . . . . . . . . . 12 (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6))) = 0
210209oveq2i 7286 . . . . . . . . . . 11 ((((3 / 2) · 𝑋) − 𝑋) − (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6)))) = ((((3 / 2) · 𝑋) − 𝑋) − 0)
211 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
212206a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 4) − (1 / 2)) ∈ ℂ)
213207a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → -((3 / 2) · (1 / 6)) ∈ ℂ)
214176, 211, 212, 213subadd4d 11380 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6)))) = ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
215 subdir 11409 . . . . . . . . . . . . . . 15 (((3 / 2) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (((3 / 2) − 1) · 𝑋) = (((3 / 2) · 𝑋) − (1 · 𝑋)))
216108, 60, 215mp3an12 1450 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) − 1) · 𝑋) = (((3 / 2) · 𝑋) − (1 · 𝑋)))
217 divsubdir 11669 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((3 − 2) / 2) = ((3 / 2) − (2 / 2)))
21835, 85, 104, 217mp3an 1460 . . . . . . . . . . . . . . . . 17 ((3 − 2) / 2) = ((3 / 2) − (2 / 2))
21995oveq1i 7285 . . . . . . . . . . . . . . . . 17 ((3 − 2) / 2) = (1 / 2)
220 2div2e1 12114 . . . . . . . . . . . . . . . . . 18 (2 / 2) = 1
221220oveq2i 7286 . . . . . . . . . . . . . . . . 17 ((3 / 2) − (2 / 2)) = ((3 / 2) − 1)
222218, 219, 2213eqtr3ri 2775 . . . . . . . . . . . . . . . 16 ((3 / 2) − 1) = (1 / 2)
223222oveq1i 7285 . . . . . . . . . . . . . . 15 (((3 / 2) − 1) · 𝑋) = ((1 / 2) · 𝑋)
224223a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) − 1) · 𝑋) = ((1 / 2) · 𝑋))
225 mulid2 10974 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (1 · 𝑋) = 𝑋)
226225oveq2d 7291 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) − (1 · 𝑋)) = (((3 / 2) · 𝑋) − 𝑋))
227216, 224, 2263eqtr3rd 2787 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) − 𝑋) = ((1 / 2) · 𝑋))
228227oveq1d 7290 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − 0) = (((1 / 2) · 𝑋) − 0))
229 mulcl 10955 . . . . . . . . . . . . . 14 (((1 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((1 / 2) · 𝑋) ∈ ℂ)
23069, 229mpan 687 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 2) · 𝑋) ∈ ℂ)
231230subid1d 11321 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (((1 / 2) · 𝑋) − 0) = ((1 / 2) · 𝑋))
232228, 231eqtrd 2778 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − 0) = ((1 / 2) · 𝑋))
233210, 214, 2323eqtr3a 2802 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))) = ((1 / 2) · 𝑋))
234174, 180, 2333eqtr2d 2784 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = ((1 / 2) · 𝑋))
235234negeqd 11215 . . . . . . . 8 (𝑋 ∈ ℂ → -(((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = -((1 / 2) · 𝑋))
236169, 235eqtr3d 2780 . . . . . . 7 (𝑋 ∈ ℂ → (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6)))) = -((1 / 2) · 𝑋))
237236oveq2d 7291 . . . . . 6 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + -((1 / 2) · 𝑋)))
238131, 230negsubd 11338 . . . . . 6 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) + -((1 / 2) · 𝑋)) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
239168, 237, 2383eqtrd 2782 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
240141, 142, 2393eqtrd 2782 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
2418, 240eqtrid 2790 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
242241oveq2d 7291 . 2 (𝑋 ∈ ℂ → ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))) = ((𝑋↑3) − (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋))))
243 expcl 13800 . . . 4 ((𝑋 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑋↑3) ∈ ℂ)
2441, 243mpan2 688 . . 3 (𝑋 ∈ ℂ → (𝑋↑3) ∈ ℂ)
245244, 131, 230subsubd 11360 . 2 (𝑋 ∈ ℂ → ((𝑋↑3) − (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋))) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
2463, 242, 2453eqtrd 2782 1 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3o 1085   = wceq 1539  wcel 2106  wne 2943  cun 3885  {csn 4561  {cpr 4563  {ctp 4565  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  3c3 12029  4c4 12030  6c6 12032  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cexp 13782  Ccbc 14016  Σcsu 15397   BernPoly cbp 15756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-bpoly 15757
This theorem is referenced by:  bpoly4  15769
  Copyright terms: Public domain W3C validator