MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly3 Structured version   Visualization version   GIF version

Theorem bpoly3 16024
Description: The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly3 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))

Proof of Theorem bpoly3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 3nn0 12460 . . 3 3 ∈ ℕ0
2 bpolyval 16015 . . 3 ((3 ∈ ℕ0𝑋 ∈ ℂ) → (3 BernPoly 𝑋) = ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))))
31, 2mpan 690 . 2 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))))
4 3m1e2 12309 . . . . . . 7 (3 − 1) = 2
5 df-2 12249 . . . . . . 7 2 = (1 + 1)
64, 5eqtri 2752 . . . . . 6 (3 − 1) = (1 + 1)
76oveq2i 7398 . . . . 5 (0...(3 − 1)) = (0...(1 + 1))
87sumeq1i 15663 . . . 4 Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))
9 1eluzge0 12839 . . . . . . 7 1 ∈ (ℤ‘0)
109a1i 11 . . . . . 6 (𝑋 ∈ ℂ → 1 ∈ (ℤ‘0))
11 0z 12540 . . . . . . . . . . . . 13 0 ∈ ℤ
12 fzpr 13540 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1311, 12ax-mp 5 . . . . . . . . . . . 12 (0...(0 + 1)) = {0, (0 + 1)}
14 0p1e1 12303 . . . . . . . . . . . . 13 (0 + 1) = 1
1514oveq2i 7398 . . . . . . . . . . . 12 (0...(0 + 1)) = (0...1)
1614preq2i 4701 . . . . . . . . . . . 12 {0, (0 + 1)} = {0, 1}
1713, 15, 163eqtr3ri 2761 . . . . . . . . . . 11 {0, 1} = (0...1)
185sneqi 4600 . . . . . . . . . . 11 {2} = {(1 + 1)}
1917, 18uneq12i 4129 . . . . . . . . . 10 ({0, 1} ∪ {2}) = ((0...1) ∪ {(1 + 1)})
20 df-tp 4594 . . . . . . . . . 10 {0, 1, 2} = ({0, 1} ∪ {2})
21 fzsuc 13532 . . . . . . . . . . 11 (1 ∈ (ℤ‘0) → (0...(1 + 1)) = ((0...1) ∪ {(1 + 1)}))
229, 21ax-mp 5 . . . . . . . . . 10 (0...(1 + 1)) = ((0...1) ∪ {(1 + 1)})
2319, 20, 223eqtr4ri 2763 . . . . . . . . 9 (0...(1 + 1)) = {0, 1, 2}
2423eleq2i 2820 . . . . . . . 8 (𝑘 ∈ (0...(1 + 1)) ↔ 𝑘 ∈ {0, 1, 2})
25 vex 3451 . . . . . . . . 9 𝑘 ∈ V
2625eltp 4653 . . . . . . . 8 (𝑘 ∈ {0, 1, 2} ↔ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2))
2724, 26bitri 275 . . . . . . 7 (𝑘 ∈ (0...(1 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2))
28 oveq2 7395 . . . . . . . . . . . 12 (𝑘 = 0 → (3C𝑘) = (3C0))
29 bcn0 14275 . . . . . . . . . . . . 13 (3 ∈ ℕ0 → (3C0) = 1)
301, 29ax-mp 5 . . . . . . . . . . . 12 (3C0) = 1
3128, 30eqtrdi 2780 . . . . . . . . . . 11 (𝑘 = 0 → (3C𝑘) = 1)
32 oveq1 7394 . . . . . . . . . . . 12 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
33 oveq2 7395 . . . . . . . . . . . . . 14 (𝑘 = 0 → (3 − 𝑘) = (3 − 0))
3433oveq1d 7402 . . . . . . . . . . . . 13 (𝑘 = 0 → ((3 − 𝑘) + 1) = ((3 − 0) + 1))
35 3cn 12267 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
3635subid1i 11494 . . . . . . . . . . . . . . 15 (3 − 0) = 3
3736oveq1i 7397 . . . . . . . . . . . . . 14 ((3 − 0) + 1) = (3 + 1)
38 df-4 12251 . . . . . . . . . . . . . 14 4 = (3 + 1)
3937, 38eqtr4i 2755 . . . . . . . . . . . . 13 ((3 − 0) + 1) = 4
4034, 39eqtrdi 2780 . . . . . . . . . . . 12 (𝑘 = 0 → ((3 − 𝑘) + 1) = 4)
4132, 40oveq12d 7405 . . . . . . . . . . 11 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 4))
4231, 41oveq12d 7405 . . . . . . . . . 10 (𝑘 = 0 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
43 bpoly0 16016 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
4443oveq1d 7402 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 4) = (1 / 4))
4544oveq2d 7403 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) = (1 · (1 / 4)))
46 4cn 12271 . . . . . . . . . . . . 13 4 ∈ ℂ
47 4ne0 12294 . . . . . . . . . . . . 13 4 ≠ 0
4846, 47reccli 11912 . . . . . . . . . . . 12 (1 / 4) ∈ ℂ
4948mullidi 11179 . . . . . . . . . . 11 (1 · (1 / 4)) = (1 / 4)
5045, 49eqtrdi 2780 . . . . . . . . . 10 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) = (1 / 4))
5142, 50sylan9eqr 2786 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 / 4))
5251, 48eqeltrdi 2836 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 0) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
53 oveq2 7395 . . . . . . . . . . . 12 (𝑘 = 1 → (3C𝑘) = (3C1))
54 bcn1 14278 . . . . . . . . . . . . 13 (3 ∈ ℕ0 → (3C1) = 3)
551, 54ax-mp 5 . . . . . . . . . . . 12 (3C1) = 3
5653, 55eqtrdi 2780 . . . . . . . . . . 11 (𝑘 = 1 → (3C𝑘) = 3)
57 oveq1 7394 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
58 oveq2 7395 . . . . . . . . . . . . . 14 (𝑘 = 1 → (3 − 𝑘) = (3 − 1))
5958oveq1d 7402 . . . . . . . . . . . . 13 (𝑘 = 1 → ((3 − 𝑘) + 1) = ((3 − 1) + 1))
60 ax-1cn 11126 . . . . . . . . . . . . . 14 1 ∈ ℂ
61 npcan 11430 . . . . . . . . . . . . . 14 ((3 ∈ ℂ ∧ 1 ∈ ℂ) → ((3 − 1) + 1) = 3)
6235, 60, 61mp2an 692 . . . . . . . . . . . . 13 ((3 − 1) + 1) = 3
6359, 62eqtrdi 2780 . . . . . . . . . . . 12 (𝑘 = 1 → ((3 − 𝑘) + 1) = 3)
6457, 63oveq12d 7405 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 3))
6556, 64oveq12d 7405 . . . . . . . . . 10 (𝑘 = 1 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((1 BernPoly 𝑋) / 3)))
66 bpoly1 16017 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
6766oveq1d 7402 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 BernPoly 𝑋) / 3) = ((𝑋 − (1 / 2)) / 3))
6867oveq2d 7403 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((1 BernPoly 𝑋) / 3)) = (3 · ((𝑋 − (1 / 2)) / 3)))
69 halfcn 12396 . . . . . . . . . . . . 13 (1 / 2) ∈ ℂ
70 subcl 11420 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝑋 − (1 / 2)) ∈ ℂ)
7169, 70mpan2 691 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
72 3ne0 12292 . . . . . . . . . . . . 13 3 ≠ 0
73 divcan2 11845 . . . . . . . . . . . . 13 (((𝑋 − (1 / 2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7435, 72, 73mp3an23 1455 . . . . . . . . . . . 12 ((𝑋 − (1 / 2)) ∈ ℂ → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7571, 74syl 17 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((𝑋 − (1 / 2)) / 3)) = (𝑋 − (1 / 2)))
7668, 75eqtrd 2764 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · ((1 BernPoly 𝑋) / 3)) = (𝑋 − (1 / 2)))
7765, 76sylan9eqr 2786 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (𝑋 − (1 / 2)))
7871adantr 480 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → (𝑋 − (1 / 2)) ∈ ℂ)
7977, 78eqeltrd 2828 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
80 oveq2 7395 . . . . . . . . . . . 12 (𝑘 = 2 → (3C𝑘) = (3C2))
81 bcn2 14284 . . . . . . . . . . . . . 14 (3 ∈ ℕ0 → (3C2) = ((3 · (3 − 1)) / 2))
821, 81ax-mp 5 . . . . . . . . . . . . 13 (3C2) = ((3 · (3 − 1)) / 2)
834oveq2i 7398 . . . . . . . . . . . . . . 15 (3 · (3 − 1)) = (3 · 2)
8483oveq1i 7397 . . . . . . . . . . . . . 14 ((3 · (3 − 1)) / 2) = ((3 · 2) / 2)
85 2cn 12261 . . . . . . . . . . . . . . 15 2 ∈ ℂ
86 2ne0 12290 . . . . . . . . . . . . . . 15 2 ≠ 0
8735, 85, 86divcan4i 11929 . . . . . . . . . . . . . 14 ((3 · 2) / 2) = 3
8884, 87eqtri 2752 . . . . . . . . . . . . 13 ((3 · (3 − 1)) / 2) = 3
8982, 88eqtri 2752 . . . . . . . . . . . 12 (3C2) = 3
9080, 89eqtrdi 2780 . . . . . . . . . . 11 (𝑘 = 2 → (3C𝑘) = 3)
91 oveq1 7394 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 BernPoly 𝑋) = (2 BernPoly 𝑋))
92 oveq2 7395 . . . . . . . . . . . . . 14 (𝑘 = 2 → (3 − 𝑘) = (3 − 2))
9392oveq1d 7402 . . . . . . . . . . . . 13 (𝑘 = 2 → ((3 − 𝑘) + 1) = ((3 − 2) + 1))
94 2p1e3 12323 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
9535, 85, 60, 94subaddrii 11511 . . . . . . . . . . . . . . 15 (3 − 2) = 1
9695oveq1i 7397 . . . . . . . . . . . . . 14 ((3 − 2) + 1) = (1 + 1)
9796, 5eqtr4i 2755 . . . . . . . . . . . . 13 ((3 − 2) + 1) = 2
9893, 97eqtrdi 2780 . . . . . . . . . . . 12 (𝑘 = 2 → ((3 − 𝑘) + 1) = 2)
9991, 98oveq12d 7405 . . . . . . . . . . 11 (𝑘 = 2 → ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)) = ((2 BernPoly 𝑋) / 2))
10090, 99oveq12d 7405 . . . . . . . . . 10 (𝑘 = 2 → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((2 BernPoly 𝑋) / 2)))
101 2nn0 12459 . . . . . . . . . . . . 13 2 ∈ ℕ0
102 bpolycl 16018 . . . . . . . . . . . . 13 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) ∈ ℂ)
103101, 102mpan 690 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) ∈ ℂ)
104 2cnne0 12391 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
105 div12 11859 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ (2 BernPoly 𝑋) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
10635, 104, 105mp3an13 1454 . . . . . . . . . . . 12 ((2 BernPoly 𝑋) ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
107103, 106syl 17 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = ((2 BernPoly 𝑋) · (3 / 2)))
10835, 85, 86divcli 11924 . . . . . . . . . . . 12 (3 / 2) ∈ ℂ
109 mulcom 11154 . . . . . . . . . . . 12 (((2 BernPoly 𝑋) ∈ ℂ ∧ (3 / 2) ∈ ℂ) → ((2 BernPoly 𝑋) · (3 / 2)) = ((3 / 2) · (2 BernPoly 𝑋)))
110103, 108, 109sylancl 586 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · (3 / 2)) = ((3 / 2) · (2 BernPoly 𝑋)))
111 bpoly2 16023 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
112111oveq2d 7403 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · (2 BernPoly 𝑋)) = ((3 / 2) · (((𝑋↑2) − 𝑋) + (1 / 6))))
113 sqcl 14083 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
114 6cn 12277 . . . . . . . . . . . . . . . 16 6 ∈ ℂ
115 6re 12276 . . . . . . . . . . . . . . . . 17 6 ∈ ℝ
116 6pos 12296 . . . . . . . . . . . . . . . . 17 0 < 6
117115, 116gt0ne0ii 11714 . . . . . . . . . . . . . . . 16 6 ≠ 0
118114, 117reccli 11912 . . . . . . . . . . . . . . 15 (1 / 6) ∈ ℂ
119 subsub 11452 . . . . . . . . . . . . . . 15 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
120118, 119mp3an3 1452 . . . . . . . . . . . . . 14 (((𝑋↑2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
121113, 120mpancom 688 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((𝑋↑2) − (𝑋 − (1 / 6))) = (((𝑋↑2) − 𝑋) + (1 / 6)))
122121oveq2d 7403 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = ((3 / 2) · (((𝑋↑2) − 𝑋) + (1 / 6))))
123 subcl 11420 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → (𝑋 − (1 / 6)) ∈ ℂ)
124118, 123mpan2 691 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (1 / 6)) ∈ ℂ)
125 subdi 11611 . . . . . . . . . . . . 13 (((3 / 2) ∈ ℂ ∧ (𝑋↑2) ∈ ℂ ∧ (𝑋 − (1 / 6)) ∈ ℂ) → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
126108, 113, 124, 125mp3an2i 1468 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · ((𝑋↑2) − (𝑋 − (1 / 6)))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
127112, 122, 1263eqtr2d 2770 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (2 BernPoly 𝑋)) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
128107, 110, 1273eqtrd 2768 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · ((2 BernPoly 𝑋) / 2)) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
129100, 128sylan9eqr 2786 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))))
130 mulcl 11152 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ (𝑋↑2) ∈ ℂ) → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
131108, 113, 130sylancr 587 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
132 mulcl 11152 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ (𝑋 − (1 / 6)) ∈ ℂ) → ((3 / 2) · (𝑋 − (1 / 6))) ∈ ℂ)
133108, 124, 132sylancr 587 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋 − (1 / 6))) ∈ ℂ)
134131, 133subcld 11533 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))) ∈ ℂ)
135134adantr 480 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6)))) ∈ ℂ)
136129, 135eqeltrd 2828 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 = 2) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
13752, 79, 1363jaodan 1433 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = 1 ∨ 𝑘 = 2)) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
13827, 137sylan2b 594 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(1 + 1))) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
1395eqeq2i 2742 . . . . . . 7 (𝑘 = 2 ↔ 𝑘 = (1 + 1))
140139, 100sylbir 235 . . . . . 6 (𝑘 = (1 + 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((2 BernPoly 𝑋) / 2)))
14110, 138, 140fsump1 15722 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((2 BernPoly 𝑋) / 2))))
142128oveq2d 7403 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((2 BernPoly 𝑋) / 2))) = (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))))
14315sumeq1i 15663 . . . . . . . . 9 Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))
144 0nn0 12457 . . . . . . . . . . . . 13 0 ∈ ℕ0
145 nn0uz 12835 . . . . . . . . . . . . 13 0 = (ℤ‘0)
146144, 145eleqtri 2826 . . . . . . . . . . . 12 0 ∈ (ℤ‘0)
147146a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
14813, 16eqtri 2752 . . . . . . . . . . . . . 14 (0...(0 + 1)) = {0, 1}
149148eleq2i 2820 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(0 + 1)) ↔ 𝑘 ∈ {0, 1})
15025elpr 4614 . . . . . . . . . . . . 13 (𝑘 ∈ {0, 1} ↔ (𝑘 = 0 ∨ 𝑘 = 1))
151149, 150bitri 275 . . . . . . . . . . . 12 (𝑘 ∈ (0...(0 + 1)) ↔ (𝑘 = 0 ∨ 𝑘 = 1))
15252, 79jaodan 959 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ (𝑘 = 0 ∨ 𝑘 = 1)) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
153151, 152sylan2b 594 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) ∈ ℂ)
15414eqeq2i 2742 . . . . . . . . . . . 12 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
155154, 65sylbi 217 . . . . . . . . . . 11 (𝑘 = (0 + 1) → ((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (3 · ((1 BernPoly 𝑋) / 3)))
156147, 153, 155fsump1 15722 . . . . . . . . . 10 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((1 BernPoly 𝑋) / 3))))
15750, 48eqeltrdi 2836 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 4)) ∈ ℂ)
15842fsum1 15713 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 4)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
15911, 157, 158sylancr 587 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 4)))
160159, 50eqtrd 2764 . . . . . . . . . . 11 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (1 / 4))
161160, 76oveq12d 7405 . . . . . . . . . 10 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (3 · ((1 BernPoly 𝑋) / 3))) = ((1 / 4) + (𝑋 − (1 / 2))))
162156, 161eqtrd 2764 . . . . . . . . 9 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = ((1 / 4) + (𝑋 − (1 / 2))))
163143, 162eqtr3id 2778 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = ((1 / 4) + (𝑋 − (1 / 2))))
164163oveq1d 7402 . . . . . . 7 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((1 / 4) + (𝑋 − (1 / 2))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))))
165 addcl 11150 . . . . . . . . 9 (((1 / 4) ∈ ℂ ∧ (𝑋 − (1 / 2)) ∈ ℂ) → ((1 / 4) + (𝑋 − (1 / 2))) ∈ ℂ)
16648, 71, 165sylancr 587 . . . . . . . 8 (𝑋 ∈ ℂ → ((1 / 4) + (𝑋 − (1 / 2))) ∈ ℂ)
167166, 131, 133addsub12d 11556 . . . . . . 7 (𝑋 ∈ ℂ → (((1 / 4) + (𝑋 − (1 / 2))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))))
168164, 167eqtrd 2764 . . . . . 6 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))))
169133, 166negsubdi2d 11549 . . . . . . . 8 (𝑋 ∈ ℂ → -(((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6)))))
170 subdi 11611 . . . . . . . . . . . 12 (((3 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 6) ∈ ℂ) → ((3 / 2) · (𝑋 − (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
171108, 118, 170mp3an13 1454 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋 − (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
172 addsub12 11434 . . . . . . . . . . . 12 (((1 / 4) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((1 / 4) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 4) − (1 / 2))))
17348, 69, 172mp3an13 1454 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((1 / 4) + (𝑋 − (1 / 2))) = (𝑋 + ((1 / 4) − (1 / 2))))
174171, 173oveq12d 7405 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = ((((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
175 mulcl 11152 . . . . . . . . . . . . 13 (((3 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((3 / 2) · 𝑋) ∈ ℂ)
176108, 175mpan 690 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((3 / 2) · 𝑋) ∈ ℂ)
177108, 118mulcli 11181 . . . . . . . . . . . 12 ((3 / 2) · (1 / 6)) ∈ ℂ
178 negsub 11470 . . . . . . . . . . . 12 ((((3 / 2) · 𝑋) ∈ ℂ ∧ ((3 / 2) · (1 / 6)) ∈ ℂ) → (((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
179176, 177, 178sylancl 586 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) = (((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))))
180179oveq1d 7402 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))) = ((((3 / 2) · 𝑋) − ((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
18169, 48negsubdi2i 11508 . . . . . . . . . . . . . 14 -((1 / 2) − (1 / 4)) = ((1 / 4) − (1 / 2))
18285, 35, 85mul12i 11369 . . . . . . . . . . . . . . . . . . 19 (2 · (3 · 2)) = (3 · (2 · 2))
183 3t2e6 12347 . . . . . . . . . . . . . . . . . . . 20 (3 · 2) = 6
184183oveq2i 7398 . . . . . . . . . . . . . . . . . . 19 (2 · (3 · 2)) = (2 · 6)
185 2t2e4 12345 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
186185oveq2i 7398 . . . . . . . . . . . . . . . . . . 19 (3 · (2 · 2)) = (3 · 4)
187182, 184, 1863eqtr3i 2760 . . . . . . . . . . . . . . . . . 18 (2 · 6) = (3 · 4)
188187oveq2i 7398 . . . . . . . . . . . . . . . . 17 ((3 · 1) / (2 · 6)) = ((3 · 1) / (3 · 4))
18946, 47pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℂ ∧ 4 ≠ 0)
19035, 72pm3.2i 470 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℂ ∧ 3 ≠ 0)
191 divcan5 11884 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 · 1) / (3 · 4)) = (1 / 4))
19260, 189, 190, 191mp3an 1463 . . . . . . . . . . . . . . . . 17 ((3 · 1) / (3 · 4)) = (1 / 4)
193188, 192eqtri 2752 . . . . . . . . . . . . . . . 16 ((3 · 1) / (2 · 6)) = (1 / 4)
19435, 85, 60, 114, 86, 117divmuldivi 11942 . . . . . . . . . . . . . . . 16 ((3 / 2) · (1 / 6)) = ((3 · 1) / (2 · 6))
195 2t1e2 12344 . . . . . . . . . . . . . . . . . . . 20 (2 · 1) = 2
196195, 5eqtri 2752 . . . . . . . . . . . . . . . . . . 19 (2 · 1) = (1 + 1)
197196, 185oveq12i 7399 . . . . . . . . . . . . . . . . . 18 ((2 · 1) / (2 · 2)) = ((1 + 1) / 4)
198 divcan5 11884 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · 2)) = (1 / 2))
19960, 104, 104, 198mp3an 1463 . . . . . . . . . . . . . . . . . 18 ((2 · 1) / (2 · 2)) = (1 / 2)
20060, 60, 46, 47divdiri 11939 . . . . . . . . . . . . . . . . . 18 ((1 + 1) / 4) = ((1 / 4) + (1 / 4))
201197, 199, 2003eqtr3ri 2761 . . . . . . . . . . . . . . . . 17 ((1 / 4) + (1 / 4)) = (1 / 2)
20269, 48, 48, 201subaddrii 11511 . . . . . . . . . . . . . . . 16 ((1 / 2) − (1 / 4)) = (1 / 4)
203193, 194, 2023eqtr4ri 2763 . . . . . . . . . . . . . . 15 ((1 / 2) − (1 / 4)) = ((3 / 2) · (1 / 6))
204203negeqi 11414 . . . . . . . . . . . . . 14 -((1 / 2) − (1 / 4)) = -((3 / 2) · (1 / 6))
205181, 204eqtr3i 2754 . . . . . . . . . . . . 13 ((1 / 4) − (1 / 2)) = -((3 / 2) · (1 / 6))
20648, 69subcli 11498 . . . . . . . . . . . . . 14 ((1 / 4) − (1 / 2)) ∈ ℂ
207177negcli 11490 . . . . . . . . . . . . . 14 -((3 / 2) · (1 / 6)) ∈ ℂ
208206, 207subeq0i 11502 . . . . . . . . . . . . 13 ((((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6))) = 0 ↔ ((1 / 4) − (1 / 2)) = -((3 / 2) · (1 / 6)))
209205, 208mpbir 231 . . . . . . . . . . . 12 (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6))) = 0
210209oveq2i 7398 . . . . . . . . . . 11 ((((3 / 2) · 𝑋) − 𝑋) − (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6)))) = ((((3 / 2) · 𝑋) − 𝑋) − 0)
211 id 22 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
212206a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 4) − (1 / 2)) ∈ ℂ)
213207a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → -((3 / 2) · (1 / 6)) ∈ ℂ)
214176, 211, 212, 213subadd4d 11581 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − (((1 / 4) − (1 / 2)) − -((3 / 2) · (1 / 6)))) = ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))))
215 subdir 11612 . . . . . . . . . . . . . . 15 (((3 / 2) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑋 ∈ ℂ) → (((3 / 2) − 1) · 𝑋) = (((3 / 2) · 𝑋) − (1 · 𝑋)))
216108, 60, 215mp3an12 1453 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) − 1) · 𝑋) = (((3 / 2) · 𝑋) − (1 · 𝑋)))
217 divsubdir 11876 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((3 − 2) / 2) = ((3 / 2) − (2 / 2)))
21835, 85, 104, 217mp3an 1463 . . . . . . . . . . . . . . . . 17 ((3 − 2) / 2) = ((3 / 2) − (2 / 2))
21995oveq1i 7397 . . . . . . . . . . . . . . . . 17 ((3 − 2) / 2) = (1 / 2)
220 2div2e1 12322 . . . . . . . . . . . . . . . . . 18 (2 / 2) = 1
221220oveq2i 7398 . . . . . . . . . . . . . . . . 17 ((3 / 2) − (2 / 2)) = ((3 / 2) − 1)
222218, 219, 2213eqtr3ri 2761 . . . . . . . . . . . . . . . 16 ((3 / 2) − 1) = (1 / 2)
223222oveq1i 7397 . . . . . . . . . . . . . . 15 (((3 / 2) − 1) · 𝑋) = ((1 / 2) · 𝑋)
224223a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) − 1) · 𝑋) = ((1 / 2) · 𝑋))
225 mullid 11173 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (1 · 𝑋) = 𝑋)
226225oveq2d 7403 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) − (1 · 𝑋)) = (((3 / 2) · 𝑋) − 𝑋))
227216, 224, 2263eqtr3rd 2773 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (((3 / 2) · 𝑋) − 𝑋) = ((1 / 2) · 𝑋))
228227oveq1d 7402 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − 0) = (((1 / 2) · 𝑋) − 0))
229 mulcl 11152 . . . . . . . . . . . . . 14 (((1 / 2) ∈ ℂ ∧ 𝑋 ∈ ℂ) → ((1 / 2) · 𝑋) ∈ ℂ)
23069, 229mpan 690 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 2) · 𝑋) ∈ ℂ)
231230subid1d 11522 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (((1 / 2) · 𝑋) − 0) = ((1 / 2) · 𝑋))
232228, 231eqtrd 2764 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) − 𝑋) − 0) = ((1 / 2) · 𝑋))
233210, 214, 2323eqtr3a 2788 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((((3 / 2) · 𝑋) + -((3 / 2) · (1 / 6))) − (𝑋 + ((1 / 4) − (1 / 2)))) = ((1 / 2) · 𝑋))
234174, 180, 2333eqtr2d 2770 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = ((1 / 2) · 𝑋))
235234negeqd 11415 . . . . . . . 8 (𝑋 ∈ ℂ → -(((3 / 2) · (𝑋 − (1 / 6))) − ((1 / 4) + (𝑋 − (1 / 2)))) = -((1 / 2) · 𝑋))
236169, 235eqtr3d 2766 . . . . . . 7 (𝑋 ∈ ℂ → (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6)))) = -((1 / 2) · 𝑋))
237236oveq2d 7403 . . . . . 6 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) + (((1 / 4) + (𝑋 − (1 / 2))) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) + -((1 / 2) · 𝑋)))
238131, 230negsubd 11539 . . . . . 6 (𝑋 ∈ ℂ → (((3 / 2) · (𝑋↑2)) + -((1 / 2) · 𝑋)) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
239168, 237, 2383eqtrd 2768 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) + (((3 / 2) · (𝑋↑2)) − ((3 / 2) · (𝑋 − (1 / 6))))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
240141, 142, 2393eqtrd 2768 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
2418, 240eqtrid 2776 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1))) = (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋)))
242241oveq2d 7403 . 2 (𝑋 ∈ ℂ → ((𝑋↑3) − Σ𝑘 ∈ (0...(3 − 1))((3C𝑘) · ((𝑘 BernPoly 𝑋) / ((3 − 𝑘) + 1)))) = ((𝑋↑3) − (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋))))
243 expcl 14044 . . . 4 ((𝑋 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑋↑3) ∈ ℂ)
2441, 243mpan2 691 . . 3 (𝑋 ∈ ℂ → (𝑋↑3) ∈ ℂ)
245244, 131, 230subsubd 11561 . 2 (𝑋 ∈ ℂ → ((𝑋↑3) − (((3 / 2) · (𝑋↑2)) − ((1 / 2) · 𝑋))) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
2463, 242, 2453eqtrd 2768 1 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2925  cun 3912  {csn 4589  {cpr 4591  {ctp 4593  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  3c3 12242  4c4 12243  6c6 12245  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  cexp 14026  Ccbc 14267  Σcsu 15652   BernPoly cbp 16012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-bpoly 16013
This theorem is referenced by:  bpoly4  16025
  Copyright terms: Public domain W3C validator