Proof of Theorem xsubge0
Step | Hyp | Ref
| Expression |
1 | | elxr 12852 |
. 2
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) |
2 | | 0xr 11022 |
. . . . 5
⊢ 0 ∈
ℝ* |
3 | | rexr 11021 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
4 | | xnegcl 12947 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ -𝑒𝐵 ∈
ℝ*) |
5 | | xaddcl 12973 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒
-𝑒𝐵)
∈ ℝ*) |
6 | 4, 5 | sylan2 593 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 +𝑒
-𝑒𝐵)
∈ ℝ*) |
7 | 3, 6 | sylan2 593 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴
+𝑒 -𝑒𝐵) ∈
ℝ*) |
8 | | simpr 485 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ 𝐵 ∈
ℝ) |
9 | | xleadd1 12989 |
. . . . 5
⊢ ((0
∈ ℝ* ∧ (𝐴 +𝑒
-𝑒𝐵)
∈ ℝ* ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒
-𝑒𝐵)
↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒
-𝑒𝐵)
+𝑒 𝐵))) |
10 | 2, 7, 8, 9 | mp3an2i 1465 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒
-𝑒𝐵)
+𝑒 𝐵))) |
11 | 3 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ 𝐵 ∈
ℝ*) |
12 | | xaddid2 12976 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ (0 +𝑒 𝐵) = 𝐵) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (0 +𝑒 𝐵) = 𝐵) |
14 | | xnpcan 12986 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ ((𝐴
+𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) |
15 | 13, 14 | breq12d 5087 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ ((0 +𝑒 𝐵) ≤ ((𝐴 +𝑒
-𝑒𝐵)
+𝑒 𝐵)
↔ 𝐵 ≤ 𝐴)) |
16 | 10, 15 | bitrd 278 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
17 | | pnfxr 11029 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
18 | | xrletri3 12888 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴))) |
19 | 17, 18 | mpan2 688 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = +∞ ↔
(𝐴 ≤ +∞ ∧
+∞ ≤ 𝐴))) |
20 | | mnflt0 12861 |
. . . . . . . . . . 11
⊢ -∞
< 0 |
21 | | mnfxr 11032 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
22 | | xrltnle 11042 |
. . . . . . . . . . . 12
⊢
((-∞ ∈ ℝ* ∧ 0 ∈
ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤
-∞)) |
23 | 21, 2, 22 | mp2an 689 |
. . . . . . . . . . 11
⊢ (-∞
< 0 ↔ ¬ 0 ≤ -∞) |
24 | 20, 23 | mpbi 229 |
. . . . . . . . . 10
⊢ ¬ 0
≤ -∞ |
25 | | xaddmnf1 12962 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ (𝐴
+𝑒 -∞) = -∞) |
26 | 25 | breq2d 5086 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ (0 ≤ (𝐴
+𝑒 -∞) ↔ 0 ≤ -∞)) |
27 | 24, 26 | mtbiri 327 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ ¬ 0 ≤ (𝐴
+𝑒 -∞)) |
28 | 27 | ex 413 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (𝐴 ≠ +∞
→ ¬ 0 ≤ (𝐴
+𝑒 -∞))) |
29 | 28 | necon4ad 2962 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ (𝐴
+𝑒 -∞) → 𝐴 = +∞)) |
30 | | 0le0 12074 |
. . . . . . . 8
⊢ 0 ≤
0 |
31 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝐴 = +∞ → (𝐴 +𝑒 -∞)
= (+∞ +𝑒 -∞)) |
32 | | pnfaddmnf 12964 |
. . . . . . . . 9
⊢ (+∞
+𝑒 -∞) = 0 |
33 | 31, 32 | eqtrdi 2794 |
. . . . . . . 8
⊢ (𝐴 = +∞ → (𝐴 +𝑒 -∞)
= 0) |
34 | 30, 33 | breqtrrid 5112 |
. . . . . . 7
⊢ (𝐴 = +∞ → 0 ≤ (𝐴 +𝑒
-∞)) |
35 | 29, 34 | impbid1 224 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ (𝐴
+𝑒 -∞) ↔ 𝐴 = +∞)) |
36 | | pnfge 12866 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ≤
+∞) |
37 | 36 | biantrurd 533 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (+∞ ≤ 𝐴
↔ (𝐴 ≤ +∞
∧ +∞ ≤ 𝐴))) |
38 | 19, 35, 37 | 3bitr4d 311 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ (𝐴
+𝑒 -∞) ↔ +∞ ≤ 𝐴)) |
39 | 38 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(0 ≤ (𝐴
+𝑒 -∞) ↔ +∞ ≤ 𝐴)) |
40 | | xnegeq 12941 |
. . . . . . . 8
⊢ (𝐵 = +∞ →
-𝑒𝐵 =
-𝑒+∞) |
41 | | xnegpnf 12943 |
. . . . . . . 8
⊢
-𝑒+∞ = -∞ |
42 | 40, 41 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝐵 = +∞ →
-𝑒𝐵 =
-∞) |
43 | 42 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
-𝑒𝐵 =
-∞) |
44 | 43 | oveq2d 7291 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(𝐴 +𝑒
-𝑒𝐵) =
(𝐴 +𝑒
-∞)) |
45 | 44 | breq2d 5086 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒
-∞))) |
46 | | breq1 5077 |
. . . . 5
⊢ (𝐵 = +∞ → (𝐵 ≤ 𝐴 ↔ +∞ ≤ 𝐴)) |
47 | 46 | adantl 482 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(𝐵 ≤ 𝐴 ↔ +∞ ≤ 𝐴)) |
48 | 39, 45, 47 | 3bitr4d 311 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
49 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝐴 = -∞ → (𝐴 +𝑒 +∞)
= (-∞ +𝑒 +∞)) |
50 | | mnfaddpnf 12965 |
. . . . . . . . . 10
⊢ (-∞
+𝑒 +∞) = 0 |
51 | 49, 50 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝐴 = -∞ → (𝐴 +𝑒 +∞)
= 0) |
52 | 51 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = -∞) →
(𝐴 +𝑒
+∞) = 0) |
53 | 30, 52 | breqtrrid 5112 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = -∞) →
0 ≤ (𝐴
+𝑒 +∞)) |
54 | | 0lepnf 12868 |
. . . . . . . 8
⊢ 0 ≤
+∞ |
55 | | xaddpnf1 12960 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
→ (𝐴
+𝑒 +∞) = +∞) |
56 | 54, 55 | breqtrrid 5112 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
→ 0 ≤ (𝐴
+𝑒 +∞)) |
57 | 53, 56 | pm2.61dane 3032 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ 0 ≤ (𝐴
+𝑒 +∞)) |
58 | | mnfle 12870 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ -∞ ≤ 𝐴) |
59 | 57, 58 | 2thd 264 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ (𝐴
+𝑒 +∞) ↔ -∞ ≤ 𝐴)) |
60 | 59 | adantr 481 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(0 ≤ (𝐴
+𝑒 +∞) ↔ -∞ ≤ 𝐴)) |
61 | | xnegeq 12941 |
. . . . . . . 8
⊢ (𝐵 = -∞ →
-𝑒𝐵 =
-𝑒-∞) |
62 | | xnegmnf 12944 |
. . . . . . . 8
⊢
-𝑒-∞ = +∞ |
63 | 61, 62 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝐵 = -∞ →
-𝑒𝐵 =
+∞) |
64 | 63 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
-𝑒𝐵 =
+∞) |
65 | 64 | oveq2d 7291 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐴 +𝑒
-𝑒𝐵) =
(𝐴 +𝑒
+∞)) |
66 | 65 | breq2d 5086 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒
+∞))) |
67 | | breq1 5077 |
. . . . 5
⊢ (𝐵 = -∞ → (𝐵 ≤ 𝐴 ↔ -∞ ≤ 𝐴)) |
68 | 67 | adantl 482 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐵 ≤ 𝐴 ↔ -∞ ≤ 𝐴)) |
69 | 60, 66, 68 | 3bitr4d 311 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
70 | 16, 48, 69 | 3jaodan 1429 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 = -∞)) → (0
≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
71 | 1, 70 | sylan2b 594 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (0 ≤ (𝐴 +𝑒
-𝑒𝐵)
↔ 𝐵 ≤ 𝐴)) |