MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xsubge0 Structured version   Visualization version   GIF version

Theorem xsubge0 13181
Description: Extended real version of subge0 11651. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xsubge0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))

Proof of Theorem xsubge0
StepHypRef Expression
1 elxr 13036 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2 0xr 11181 . . . . 5 0 ∈ ℝ*
3 rexr 11180 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 xnegcl 13133 . . . . . . 7 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
5 xaddcl 13159 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
64, 5sylan2 593 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
73, 6sylan2 593 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 simpr 484 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
9 xleadd1 13175 . . . . 5 ((0 ∈ ℝ* ∧ (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
102, 7, 8, 9mp3an2i 1468 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
113adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
12 xaddlid 13162 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
1311, 12syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 +𝑒 𝐵) = 𝐵)
14 xnpcan 13172 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1513, 14breq12d 5108 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ↔ 𝐵𝐴))
1610, 15bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
17 pnfxr 11188 . . . . . . 7 +∞ ∈ ℝ*
18 xrletri3 13074 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
1917, 18mpan2 691 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
20 mnflt0 13045 . . . . . . . . . . 11 -∞ < 0
21 mnfxr 11191 . . . . . . . . . . . 12 -∞ ∈ ℝ*
22 xrltnle 11201 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
2321, 2, 22mp2an 692 . . . . . . . . . . 11 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
2420, 23mpbi 230 . . . . . . . . . 10 ¬ 0 ≤ -∞
25 xaddmnf1 13148 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2625breq2d 5107 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ 0 ≤ -∞))
2724, 26mtbiri 327 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → ¬ 0 ≤ (𝐴 +𝑒 -∞))
2827ex 412 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → ¬ 0 ≤ (𝐴 +𝑒 -∞)))
2928necon4ad 2944 . . . . . . 7 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
30 0le0 12247 . . . . . . . 8 0 ≤ 0
31 oveq1 7360 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
32 pnfaddmnf 13150 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
3331, 32eqtrdi 2780 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
3430, 33breqtrrid 5133 . . . . . . 7 (𝐴 = +∞ → 0 ≤ (𝐴 +𝑒 -∞))
3529, 34impbid1 225 . . . . . 6 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ 𝐴 = +∞))
36 pnfge 13050 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
3736biantrurd 532 . . . . . 6 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
3819, 35, 373bitr4d 311 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
3938adantr 480 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
40 xnegeq 13127 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
41 xnegpnf 13129 . . . . . . . 8 -𝑒+∞ = -∞
4240, 41eqtrdi 2780 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4342adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = +∞) → -𝑒𝐵 = -∞)
4443oveq2d 7369 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4544breq2d 5107 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 -∞)))
46 breq1 5098 . . . . 5 (𝐵 = +∞ → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
4746adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
4839, 45, 473bitr4d 311 . . 3 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
49 oveq1 7360 . . . . . . . . . 10 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = (-∞ +𝑒 +∞))
50 mnfaddpnf 13151 . . . . . . . . . 10 (-∞ +𝑒 +∞) = 0
5149, 50eqtrdi 2780 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = 0)
5251adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 = -∞) → (𝐴 +𝑒 +∞) = 0)
5330, 52breqtrrid 5133 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = -∞) → 0 ≤ (𝐴 +𝑒 +∞))
54 0lepnf 13053 . . . . . . . 8 0 ≤ +∞
55 xaddpnf1 13146 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
5654, 55breqtrrid 5133 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → 0 ≤ (𝐴 +𝑒 +∞))
5753, 56pm2.61dane 3012 . . . . . 6 (𝐴 ∈ ℝ* → 0 ≤ (𝐴 +𝑒 +∞))
58 mnfle 13055 . . . . . 6 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
5957, 582thd 265 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
6059adantr 480 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
61 xnegeq 13127 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
62 xnegmnf 13130 . . . . . . . 8 -𝑒-∞ = +∞
6361, 62eqtrdi 2780 . . . . . . 7 (𝐵 = -∞ → -𝑒𝐵 = +∞)
6463adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = -∞) → -𝑒𝐵 = +∞)
6564oveq2d 7369 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 +∞))
6665breq2d 5107 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 +∞)))
67 breq1 5098 . . . . 5 (𝐵 = -∞ → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
6867adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
6960, 66, 683bitr4d 311 . . 3 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
7016, 48, 693jaodan 1433 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
711, 70sylan2b 594 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  -𝑒cxne 13029   +𝑒 cxad 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-xneg 13032  df-xadd 13033
This theorem is referenced by:  xposdif  13182  ssblps  24326  ssbl  24327  xrsxmet  24714  xrge0subcld  32719  esumle  34024  esumlef  34028
  Copyright terms: Public domain W3C validator