MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xsubge0 Structured version   Visualization version   GIF version

Theorem xsubge0 13277
Description: Extended real version of subge0 11750. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xsubge0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))

Proof of Theorem xsubge0
StepHypRef Expression
1 elxr 13132 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2 0xr 11282 . . . . 5 0 ∈ ℝ*
3 rexr 11281 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 xnegcl 13229 . . . . . . 7 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
5 xaddcl 13255 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
64, 5sylan2 593 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
73, 6sylan2 593 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 simpr 484 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
9 xleadd1 13271 . . . . 5 ((0 ∈ ℝ* ∧ (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
102, 7, 8, 9mp3an2i 1468 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
113adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
12 xaddlid 13258 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
1311, 12syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 +𝑒 𝐵) = 𝐵)
14 xnpcan 13268 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1513, 14breq12d 5132 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ↔ 𝐵𝐴))
1610, 15bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
17 pnfxr 11289 . . . . . . 7 +∞ ∈ ℝ*
18 xrletri3 13170 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
1917, 18mpan2 691 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
20 mnflt0 13141 . . . . . . . . . . 11 -∞ < 0
21 mnfxr 11292 . . . . . . . . . . . 12 -∞ ∈ ℝ*
22 xrltnle 11302 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
2321, 2, 22mp2an 692 . . . . . . . . . . 11 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
2420, 23mpbi 230 . . . . . . . . . 10 ¬ 0 ≤ -∞
25 xaddmnf1 13244 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2625breq2d 5131 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ 0 ≤ -∞))
2724, 26mtbiri 327 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → ¬ 0 ≤ (𝐴 +𝑒 -∞))
2827ex 412 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → ¬ 0 ≤ (𝐴 +𝑒 -∞)))
2928necon4ad 2951 . . . . . . 7 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
30 0le0 12341 . . . . . . . 8 0 ≤ 0
31 oveq1 7412 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
32 pnfaddmnf 13246 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
3331, 32eqtrdi 2786 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
3430, 33breqtrrid 5157 . . . . . . 7 (𝐴 = +∞ → 0 ≤ (𝐴 +𝑒 -∞))
3529, 34impbid1 225 . . . . . 6 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ 𝐴 = +∞))
36 pnfge 13146 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
3736biantrurd 532 . . . . . 6 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
3819, 35, 373bitr4d 311 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
3938adantr 480 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
40 xnegeq 13223 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
41 xnegpnf 13225 . . . . . . . 8 -𝑒+∞ = -∞
4240, 41eqtrdi 2786 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4342adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = +∞) → -𝑒𝐵 = -∞)
4443oveq2d 7421 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4544breq2d 5131 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 -∞)))
46 breq1 5122 . . . . 5 (𝐵 = +∞ → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
4746adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
4839, 45, 473bitr4d 311 . . 3 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
49 oveq1 7412 . . . . . . . . . 10 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = (-∞ +𝑒 +∞))
50 mnfaddpnf 13247 . . . . . . . . . 10 (-∞ +𝑒 +∞) = 0
5149, 50eqtrdi 2786 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = 0)
5251adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 = -∞) → (𝐴 +𝑒 +∞) = 0)
5330, 52breqtrrid 5157 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = -∞) → 0 ≤ (𝐴 +𝑒 +∞))
54 0lepnf 13149 . . . . . . . 8 0 ≤ +∞
55 xaddpnf1 13242 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
5654, 55breqtrrid 5157 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → 0 ≤ (𝐴 +𝑒 +∞))
5753, 56pm2.61dane 3019 . . . . . 6 (𝐴 ∈ ℝ* → 0 ≤ (𝐴 +𝑒 +∞))
58 mnfle 13151 . . . . . 6 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
5957, 582thd 265 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
6059adantr 480 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
61 xnegeq 13223 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
62 xnegmnf 13226 . . . . . . . 8 -𝑒-∞ = +∞
6361, 62eqtrdi 2786 . . . . . . 7 (𝐵 = -∞ → -𝑒𝐵 = +∞)
6463adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = -∞) → -𝑒𝐵 = +∞)
6564oveq2d 7421 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 +∞))
6665breq2d 5131 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 +∞)))
67 breq1 5122 . . . . 5 (𝐵 = -∞ → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
6867adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
6960, 66, 683bitr4d 311 . . 3 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
7016, 48, 693jaodan 1433 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
711, 70sylan2b 594 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129  +∞cpnf 11266  -∞cmnf 11267  *cxr 11268   < clt 11269  cle 11270  -𝑒cxne 13125   +𝑒 cxad 13126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-xneg 13128  df-xadd 13129
This theorem is referenced by:  xposdif  13278  ssblps  24361  ssbl  24362  xrsxmet  24749  xrge0subcld  32740  esumle  34089  esumlef  34093
  Copyright terms: Public domain W3C validator