MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xsubge0 Structured version   Visualization version   GIF version

Theorem xsubge0 13299
Description: Extended real version of subge0 11773. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xsubge0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))

Proof of Theorem xsubge0
StepHypRef Expression
1 elxr 13155 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2 0xr 11305 . . . . 5 0 ∈ ℝ*
3 rexr 11304 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 xnegcl 13251 . . . . . . 7 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
5 xaddcl 13277 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
64, 5sylan2 593 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
73, 6sylan2 593 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 simpr 484 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
9 xleadd1 13293 . . . . 5 ((0 ∈ ℝ* ∧ (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
102, 7, 8, 9mp3an2i 1465 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
113adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
12 xaddlid 13280 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
1311, 12syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 +𝑒 𝐵) = 𝐵)
14 xnpcan 13290 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1513, 14breq12d 5160 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ↔ 𝐵𝐴))
1610, 15bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
17 pnfxr 11312 . . . . . . 7 +∞ ∈ ℝ*
18 xrletri3 13192 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
1917, 18mpan2 691 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
20 mnflt0 13164 . . . . . . . . . . 11 -∞ < 0
21 mnfxr 11315 . . . . . . . . . . . 12 -∞ ∈ ℝ*
22 xrltnle 11325 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
2321, 2, 22mp2an 692 . . . . . . . . . . 11 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
2420, 23mpbi 230 . . . . . . . . . 10 ¬ 0 ≤ -∞
25 xaddmnf1 13266 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2625breq2d 5159 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ 0 ≤ -∞))
2724, 26mtbiri 327 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → ¬ 0 ≤ (𝐴 +𝑒 -∞))
2827ex 412 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → ¬ 0 ≤ (𝐴 +𝑒 -∞)))
2928necon4ad 2956 . . . . . . 7 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
30 0le0 12364 . . . . . . . 8 0 ≤ 0
31 oveq1 7437 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
32 pnfaddmnf 13268 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
3331, 32eqtrdi 2790 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
3430, 33breqtrrid 5185 . . . . . . 7 (𝐴 = +∞ → 0 ≤ (𝐴 +𝑒 -∞))
3529, 34impbid1 225 . . . . . 6 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ 𝐴 = +∞))
36 pnfge 13169 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
3736biantrurd 532 . . . . . 6 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
3819, 35, 373bitr4d 311 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
3938adantr 480 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
40 xnegeq 13245 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
41 xnegpnf 13247 . . . . . . . 8 -𝑒+∞ = -∞
4240, 41eqtrdi 2790 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4342adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = +∞) → -𝑒𝐵 = -∞)
4443oveq2d 7446 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4544breq2d 5159 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 -∞)))
46 breq1 5150 . . . . 5 (𝐵 = +∞ → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
4746adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
4839, 45, 473bitr4d 311 . . 3 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
49 oveq1 7437 . . . . . . . . . 10 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = (-∞ +𝑒 +∞))
50 mnfaddpnf 13269 . . . . . . . . . 10 (-∞ +𝑒 +∞) = 0
5149, 50eqtrdi 2790 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = 0)
5251adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 = -∞) → (𝐴 +𝑒 +∞) = 0)
5330, 52breqtrrid 5185 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = -∞) → 0 ≤ (𝐴 +𝑒 +∞))
54 0lepnf 13171 . . . . . . . 8 0 ≤ +∞
55 xaddpnf1 13264 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
5654, 55breqtrrid 5185 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → 0 ≤ (𝐴 +𝑒 +∞))
5753, 56pm2.61dane 3026 . . . . . 6 (𝐴 ∈ ℝ* → 0 ≤ (𝐴 +𝑒 +∞))
58 mnfle 13173 . . . . . 6 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
5957, 582thd 265 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
6059adantr 480 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
61 xnegeq 13245 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
62 xnegmnf 13248 . . . . . . . 8 -𝑒-∞ = +∞
6361, 62eqtrdi 2790 . . . . . . 7 (𝐵 = -∞ → -𝑒𝐵 = +∞)
6463adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = -∞) → -𝑒𝐵 = +∞)
6564oveq2d 7446 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 +∞))
6665breq2d 5159 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 +∞)))
67 breq1 5150 . . . . 5 (𝐵 = -∞ → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
6867adantl 481 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
6960, 66, 683bitr4d 311 . . 3 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
7016, 48, 693jaodan 1430 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
711, 70sylan2b 594 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  (class class class)co 7430  cr 11151  0cc0 11152  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  -𝑒cxne 13148   +𝑒 cxad 13149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-xneg 13151  df-xadd 13152
This theorem is referenced by:  xposdif  13300  ssblps  24447  ssbl  24448  xrsxmet  24844  xrge0subcld  32773  esumle  34038  esumlef  34042
  Copyright terms: Public domain W3C validator