MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xsubge0 Structured version   Visualization version   GIF version

Theorem xsubge0 13186
Description: Extended real version of subge0 11673. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xsubge0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))

Proof of Theorem xsubge0
StepHypRef Expression
1 elxr 13042 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2 0xr 11207 . . . . 5 0 ∈ ℝ*
3 rexr 11206 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 xnegcl 13138 . . . . . . 7 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
5 xaddcl 13164 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
64, 5sylan2 594 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
73, 6sylan2 594 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 simpr 486 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
9 xleadd1 13180 . . . . 5 ((0 ∈ ℝ* ∧ (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
102, 7, 8, 9mp3an2i 1467 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
113adantl 483 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
12 xaddid2 13167 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
1311, 12syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 +𝑒 𝐵) = 𝐵)
14 xnpcan 13177 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1513, 14breq12d 5119 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ↔ 𝐵𝐴))
1610, 15bitrd 279 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
17 pnfxr 11214 . . . . . . 7 +∞ ∈ ℝ*
18 xrletri3 13079 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
1917, 18mpan2 690 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
20 mnflt0 13051 . . . . . . . . . . 11 -∞ < 0
21 mnfxr 11217 . . . . . . . . . . . 12 -∞ ∈ ℝ*
22 xrltnle 11227 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
2321, 2, 22mp2an 691 . . . . . . . . . . 11 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
2420, 23mpbi 229 . . . . . . . . . 10 ¬ 0 ≤ -∞
25 xaddmnf1 13153 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2625breq2d 5118 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ 0 ≤ -∞))
2724, 26mtbiri 327 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → ¬ 0 ≤ (𝐴 +𝑒 -∞))
2827ex 414 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → ¬ 0 ≤ (𝐴 +𝑒 -∞)))
2928necon4ad 2959 . . . . . . 7 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
30 0le0 12259 . . . . . . . 8 0 ≤ 0
31 oveq1 7365 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
32 pnfaddmnf 13155 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
3331, 32eqtrdi 2789 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
3430, 33breqtrrid 5144 . . . . . . 7 (𝐴 = +∞ → 0 ≤ (𝐴 +𝑒 -∞))
3529, 34impbid1 224 . . . . . 6 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ 𝐴 = +∞))
36 pnfge 13056 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
3736biantrurd 534 . . . . . 6 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
3819, 35, 373bitr4d 311 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
3938adantr 482 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
40 xnegeq 13132 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
41 xnegpnf 13134 . . . . . . . 8 -𝑒+∞ = -∞
4240, 41eqtrdi 2789 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4342adantl 483 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = +∞) → -𝑒𝐵 = -∞)
4443oveq2d 7374 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4544breq2d 5118 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 -∞)))
46 breq1 5109 . . . . 5 (𝐵 = +∞ → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
4746adantl 483 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
4839, 45, 473bitr4d 311 . . 3 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
49 oveq1 7365 . . . . . . . . . 10 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = (-∞ +𝑒 +∞))
50 mnfaddpnf 13156 . . . . . . . . . 10 (-∞ +𝑒 +∞) = 0
5149, 50eqtrdi 2789 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = 0)
5251adantl 483 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 = -∞) → (𝐴 +𝑒 +∞) = 0)
5330, 52breqtrrid 5144 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = -∞) → 0 ≤ (𝐴 +𝑒 +∞))
54 0lepnf 13058 . . . . . . . 8 0 ≤ +∞
55 xaddpnf1 13151 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
5654, 55breqtrrid 5144 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → 0 ≤ (𝐴 +𝑒 +∞))
5753, 56pm2.61dane 3029 . . . . . 6 (𝐴 ∈ ℝ* → 0 ≤ (𝐴 +𝑒 +∞))
58 mnfle 13060 . . . . . 6 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
5957, 582thd 265 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
6059adantr 482 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
61 xnegeq 13132 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
62 xnegmnf 13135 . . . . . . . 8 -𝑒-∞ = +∞
6361, 62eqtrdi 2789 . . . . . . 7 (𝐵 = -∞ → -𝑒𝐵 = +∞)
6463adantl 483 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = -∞) → -𝑒𝐵 = +∞)
6564oveq2d 7374 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 +∞))
6665breq2d 5118 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 +∞)))
67 breq1 5109 . . . . 5 (𝐵 = -∞ → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
6867adantl 483 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
6960, 66, 683bitr4d 311 . . 3 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
7016, 48, 693jaodan 1431 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
711, 70sylan2b 595 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3o 1087   = wceq 1542  wcel 2107  wne 2940   class class class wbr 5106  (class class class)co 7358  cr 11055  0cc0 11056  +∞cpnf 11191  -∞cmnf 11192  *cxr 11193   < clt 11194  cle 11195  -𝑒cxne 13035   +𝑒 cxad 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-xneg 13038  df-xadd 13039
This theorem is referenced by:  xposdif  13187  ssblps  23791  ssbl  23792  xrsxmet  24188  xrge0subcld  31715  esumle  32714  esumlef  32718
  Copyright terms: Public domain W3C validator