MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn01to3 Structured version   Visualization version   GIF version

Theorem nn01to3 12979
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Proof of Theorem nn01to3
StepHypRef Expression
1 3mix3 1329 . . 3 (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
21a1d 25 . 2 (𝑁 = 3 → ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
3 nn0re 12535 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1130 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℝ)
5 3re 12346 . . . . . . . . . 10 3 ∈ ℝ
65a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 3 ∈ ℝ)
7 simp3 1135 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ≤ 3)
84, 6, 7leltned 11419 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 < 3 ↔ 3 ≠ 𝑁))
9 nesym 2987 . . . . . . . 8 (3 ≠ 𝑁 ↔ ¬ 𝑁 = 3)
108, 9bitr2di 287 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (¬ 𝑁 = 3 ↔ 𝑁 < 3))
11 elnnnn0c 12571 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
12 orc 865 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2))
13122a1d 26 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2))))
14 eluz2b3 12960 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
15 eluz2 12882 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
16 2a1 28 . . . . . . . . . . . . . . . . 17 (𝑁 = 2 → ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
17 zre 12616 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℤ → 2 ∈ ℝ)
18 zre 12616 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
19 id 22 . . . . . . . . . . . . . . . . . . . 20 (2 ≤ 𝑁 → 2 ≤ 𝑁)
20 leltne 11355 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (2 < 𝑁𝑁 ≠ 2))
2117, 18, 19, 20syl3an 1157 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (2 < 𝑁𝑁 ≠ 2))
22 2z 12648 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℤ
23 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 2 < 𝑁)
24 df-3 12330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 = (2 + 1)
2524a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 3 = (2 + 1))
2625breq2d 5167 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → (𝑁 < 3 ↔ 𝑁 < (2 + 1)))
2726biimpa 475 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ 𝑁 < 3) → 𝑁 < (2 + 1))
2827adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 𝑁 < (2 + 1))
29 btwnnz 12692 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℤ ∧ 2 < 𝑁𝑁 < (2 + 1)) → ¬ 𝑁 ∈ ℤ)
3022, 23, 28, 29mp3an2i 1463 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → ¬ 𝑁 ∈ ℤ)
3130pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → (𝑁 ∈ ℤ → 𝑁 = 2))
3231exp31 418 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → (𝑁 < 3 → (2 < 𝑁 → (𝑁 ∈ ℤ → 𝑁 = 2))))
3332com24 95 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑁 ∈ ℤ → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2))))
3433pm2.43i 52 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
35343ad2ant2 1131 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
3621, 35sylbird 259 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ≠ 2 → (𝑁 < 3 → 𝑁 = 2)))
3736com12 32 . . . . . . . . . . . . . . . . 17 (𝑁 ≠ 2 → ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
3816, 37pm2.61ine 3015 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
3915, 38sylbi 216 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 → 𝑁 = 2))
4039imp 405 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 < 3) → 𝑁 = 2)
4140olcd 872 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 < 3) → (𝑁 = 1 ∨ 𝑁 = 2))
4241ex 411 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4314, 42sylbir 234 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4443expcom 412 . . . . . . . . . 10 (𝑁 ≠ 1 → (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2))))
4513, 44pm2.61ine 3015 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4611, 45sylbir 234 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
47463adant3 1129 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4810, 47sylbid 239 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (¬ 𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4948impcom 406 . . . . 5 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → (𝑁 = 1 ∨ 𝑁 = 2))
5049orcd 871 . . . 4 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → ((𝑁 = 1 ∨ 𝑁 = 2) ∨ 𝑁 = 3))
51 df-3or 1085 . . . 4 ((𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3) ↔ ((𝑁 = 1 ∨ 𝑁 = 2) ∨ 𝑁 = 3))
5250, 51sylibr 233 . . 3 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
5352ex 411 . 2 𝑁 = 3 → ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
542, 53pm2.61i 182 1 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3o 1083  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5155  cfv 6556  (class class class)co 7426  cr 11159  1c1 11161   + caddc 11163   < clt 11300  cle 11301  cn 12266  2c2 12321  3c3 12322  0cn0 12526  cz 12612  cuz 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877
This theorem is referenced by:  hash1to3  14512
  Copyright terms: Public domain W3C validator