MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn01to3 Structured version   Visualization version   GIF version

Theorem nn01to3 12925
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Proof of Theorem nn01to3
StepHypRef Expression
1 3mix3 1333 . . 3 (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
21a1d 25 . 2 (𝑁 = 3 → ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
3 nn0re 12481 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1134 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℝ)
5 3re 12292 . . . . . . . . . 10 3 ∈ ℝ
65a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 3 ∈ ℝ)
7 simp3 1139 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ≤ 3)
84, 6, 7leltned 11367 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 < 3 ↔ 3 ≠ 𝑁))
9 nesym 2998 . . . . . . . 8 (3 ≠ 𝑁 ↔ ¬ 𝑁 = 3)
108, 9bitr2di 288 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (¬ 𝑁 = 3 ↔ 𝑁 < 3))
11 elnnnn0c 12517 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
12 orc 866 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2))
13122a1d 26 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2))))
14 eluz2b3 12906 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
15 eluz2 12828 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
16 2a1 28 . . . . . . . . . . . . . . . . 17 (𝑁 = 2 → ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
17 zre 12562 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℤ → 2 ∈ ℝ)
18 zre 12562 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
19 id 22 . . . . . . . . . . . . . . . . . . . 20 (2 ≤ 𝑁 → 2 ≤ 𝑁)
20 leltne 11303 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (2 < 𝑁𝑁 ≠ 2))
2117, 18, 19, 20syl3an 1161 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (2 < 𝑁𝑁 ≠ 2))
22 2z 12594 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℤ
23 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 2 < 𝑁)
24 df-3 12276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 = (2 + 1)
2524a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 3 = (2 + 1))
2625breq2d 5161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → (𝑁 < 3 ↔ 𝑁 < (2 + 1)))
2726biimpa 478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ 𝑁 < 3) → 𝑁 < (2 + 1))
2827adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 𝑁 < (2 + 1))
29 btwnnz 12638 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℤ ∧ 2 < 𝑁𝑁 < (2 + 1)) → ¬ 𝑁 ∈ ℤ)
3022, 23, 28, 29mp3an2i 1467 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → ¬ 𝑁 ∈ ℤ)
3130pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → (𝑁 ∈ ℤ → 𝑁 = 2))
3231exp31 421 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → (𝑁 < 3 → (2 < 𝑁 → (𝑁 ∈ ℤ → 𝑁 = 2))))
3332com24 95 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑁 ∈ ℤ → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2))))
3433pm2.43i 52 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
35343ad2ant2 1135 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
3621, 35sylbird 260 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ≠ 2 → (𝑁 < 3 → 𝑁 = 2)))
3736com12 32 . . . . . . . . . . . . . . . . 17 (𝑁 ≠ 2 → ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
3816, 37pm2.61ine 3026 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
3915, 38sylbi 216 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 → 𝑁 = 2))
4039imp 408 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 < 3) → 𝑁 = 2)
4140olcd 873 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 < 3) → (𝑁 = 1 ∨ 𝑁 = 2))
4241ex 414 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4314, 42sylbir 234 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4443expcom 415 . . . . . . . . . 10 (𝑁 ≠ 1 → (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2))))
4513, 44pm2.61ine 3026 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4611, 45sylbir 234 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
47463adant3 1133 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4810, 47sylbid 239 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (¬ 𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4948impcom 409 . . . . 5 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → (𝑁 = 1 ∨ 𝑁 = 2))
5049orcd 872 . . . 4 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → ((𝑁 = 1 ∨ 𝑁 = 2) ∨ 𝑁 = 3))
51 df-3or 1089 . . . 4 ((𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3) ↔ ((𝑁 = 1 ∨ 𝑁 = 2) ∨ 𝑁 = 3))
5250, 51sylibr 233 . . 3 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
5352ex 414 . 2 𝑁 = 3 → ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
542, 53pm2.61i 182 1 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5149  cfv 6544  (class class class)co 7409  cr 11109  1c1 11111   + caddc 11113   < clt 11248  cle 11249  cn 12212  2c2 12267  3c3 12268  0cn0 12472  cz 12558  cuz 12822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823
This theorem is referenced by:  hash1to3  14452
  Copyright terms: Public domain W3C validator