MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn01to3 Structured version   Visualization version   GIF version

Theorem nn01to3 12328
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Proof of Theorem nn01to3
StepHypRef Expression
1 3mix3 1328 . . 3 (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
21a1d 25 . 2 (𝑁 = 3 → ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
3 nn0re 11893 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
433ad2ant1 1129 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℝ)
5 3re 11704 . . . . . . . . . 10 3 ∈ ℝ
65a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 3 ∈ ℝ)
7 simp3 1134 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ≤ 3)
84, 6, 7leltned 10779 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 < 3 ↔ 3 ≠ 𝑁))
9 nesym 3072 . . . . . . . 8 (3 ≠ 𝑁 ↔ ¬ 𝑁 = 3)
108, 9syl6rbb 290 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (¬ 𝑁 = 3 ↔ 𝑁 < 3))
11 elnnnn0c 11929 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
12 orc 863 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2))
13122a1d 26 . . . . . . . . . 10 (𝑁 = 1 → (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2))))
14 eluz2b3 12309 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
15 eluz2 12236 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
16 2a1 28 . . . . . . . . . . . . . . . . 17 (𝑁 = 2 → ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
17 zre 11972 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℤ → 2 ∈ ℝ)
18 zre 11972 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
19 id 22 . . . . . . . . . . . . . . . . . . . 20 (2 ≤ 𝑁 → 2 ≤ 𝑁)
20 leltne 10716 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (2 < 𝑁𝑁 ≠ 2))
2117, 18, 19, 20syl3an 1156 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (2 < 𝑁𝑁 ≠ 2))
22 2z 12001 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℤ
23 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 2 < 𝑁)
24 df-3 11688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 = (2 + 1)
2524a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 3 = (2 + 1))
2625breq2d 5064 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → (𝑁 < 3 ↔ 𝑁 < (2 + 1)))
2726biimpa 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ 𝑁 < 3) → 𝑁 < (2 + 1))
2827adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → 𝑁 < (2 + 1))
29 btwnnz 12045 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℤ ∧ 2 < 𝑁𝑁 < (2 + 1)) → ¬ 𝑁 ∈ ℤ)
3022, 23, 28, 29mp3an2i 1462 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → ¬ 𝑁 ∈ ℤ)
3130pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℤ ∧ 𝑁 < 3) ∧ 2 < 𝑁) → (𝑁 ∈ ℤ → 𝑁 = 2))
3231exp31 422 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → (𝑁 < 3 → (2 < 𝑁 → (𝑁 ∈ ℤ → 𝑁 = 2))))
3332com24 95 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑁 ∈ ℤ → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2))))
3433pm2.43i 52 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℤ → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
35343ad2ant2 1130 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (2 < 𝑁 → (𝑁 < 3 → 𝑁 = 2)))
3621, 35sylbird 262 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 ≠ 2 → (𝑁 < 3 → 𝑁 = 2)))
3736com12 32 . . . . . . . . . . . . . . . . 17 (𝑁 ≠ 2 → ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2)))
3816, 37pm2.61ine 3100 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → (𝑁 < 3 → 𝑁 = 2))
3915, 38sylbi 219 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 → 𝑁 = 2))
4039imp 409 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 < 3) → 𝑁 = 2)
4140olcd 870 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑁 < 3) → (𝑁 = 1 ∨ 𝑁 = 2))
4241ex 415 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4314, 42sylbir 237 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4443expcom 416 . . . . . . . . . 10 (𝑁 ≠ 1 → (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2))))
4513, 44pm2.61ine 3100 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4611, 45sylbir 237 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
47463adant3 1128 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 < 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4810, 47sylbid 242 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (¬ 𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2)))
4948impcom 410 . . . . 5 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → (𝑁 = 1 ∨ 𝑁 = 2))
5049orcd 869 . . . 4 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → ((𝑁 = 1 ∨ 𝑁 = 2) ∨ 𝑁 = 3))
51 df-3or 1084 . . . 4 ((𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3) ↔ ((𝑁 = 1 ∨ 𝑁 = 2) ∨ 𝑁 = 3))
5250, 51sylibr 236 . . 3 ((¬ 𝑁 = 3 ∧ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3)) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
5352ex 415 . 2 𝑁 = 3 → ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
542, 53pm2.61i 184 1 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5052  cfv 6341  (class class class)co 7142  cr 10522  1c1 10524   + caddc 10526   < clt 10661  cle 10662  cn 11624  2c2 11679  3c3 11680  0cn0 11884  cz 11968  cuz 12230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-z 11969  df-uz 12231
This theorem is referenced by:  hash1to3  13839
  Copyright terms: Public domain W3C validator