| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > btwncolinear1 | Structured version Visualization version GIF version | ||
| Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013.) |
| Ref | Expression |
|---|---|
| btwncolinear1 | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐵, 𝐶〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix3 1333 | . 2 ⊢ (𝐶 Btwn 〈𝐴, 𝐵〉 → (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉)) | |
| 2 | brcolinear 36124 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | |
| 3 | 1, 2 | imbitrrid 246 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐵, 𝐶〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 ‘cfv 6486 ℕcn 12132 𝔼cee 28867 Btwn cbtwn 28868 Colinear ccolin 36102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-iota 6442 df-fv 6494 df-oprab 7356 df-colinear 36104 |
| This theorem is referenced by: btwncolinear2 36135 btwncolinear3 36136 btwncolinear4 36137 btwncolinear5 36138 btwncolinear6 36139 idinside 36149 btwnconn1lem12 36163 brsegle2 36174 broutsideof2 36187 outsidele 36197 |
| Copyright terms: Public domain | W3C validator |