Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwncolinear1 Structured version   Visualization version   GIF version

Theorem btwncolinear1 36064
Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013.)
Assertion
Ref Expression
btwncolinear1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → 𝐴 Colinear ⟨𝐵, 𝐶⟩))

Proof of Theorem btwncolinear1
StepHypRef Expression
1 3mix3 1333 . 2 (𝐶 Btwn ⟨𝐴, 𝐵⟩ → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩))
2 brcolinear 36054 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
31, 2imbitrrid 246 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → 𝐴 Colinear ⟨𝐵, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086  wcel 2109  cop 4598   class class class wbr 5110  cfv 6514  cn 12193  𝔼cee 28822   Btwn cbtwn 28823   Colinear ccolin 36032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-iota 6467  df-fv 6522  df-oprab 7394  df-colinear 36034
This theorem is referenced by:  btwncolinear2  36065  btwncolinear3  36066  btwncolinear4  36067  btwncolinear5  36068  btwncolinear6  36069  idinside  36079  btwnconn1lem12  36093  brsegle2  36104  broutsideof2  36117  outsidele  36127
  Copyright terms: Public domain W3C validator