![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > btwncolinear1 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013.) |
Ref | Expression |
---|---|
btwncolinear1 | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐵, 𝐶〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix3 1332 | . 2 ⊢ (𝐶 Btwn 〈𝐴, 𝐵〉 → (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉)) | |
2 | brcolinear 36015 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | |
3 | 1, 2 | imbitrrid 246 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐵, 𝐶〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1086 ∧ w3a 1087 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ‘cfv 6568 ℕcn 12287 𝔼cee 28913 Btwn cbtwn 28914 Colinear ccolin 35993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5701 df-rel 5702 df-cnv 5703 df-iota 6520 df-fv 6576 df-oprab 7447 df-colinear 35995 |
This theorem is referenced by: btwncolinear2 36026 btwncolinear3 36027 btwncolinear4 36028 btwncolinear5 36029 btwncolinear6 36030 idinside 36040 btwnconn1lem12 36054 brsegle2 36065 broutsideof2 36078 outsidele 36088 |
Copyright terms: Public domain | W3C validator |