| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pfxnd | Structured version Visualization version GIF version | ||
| Description: The value of a prefix operation for a length argument larger than the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6910). (Contributed by AV, 3-May-2020.) |
| Ref | Expression |
|---|---|
| pfxnd | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxval 14689 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = (𝑊 substr 〈0, 𝐿〉)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = (𝑊 substr 〈0, 𝐿〉)) |
| 3 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → 𝑊 ∈ Word 𝑉) | |
| 4 | 0zd 12598 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → 0 ∈ ℤ) | |
| 5 | nn0z 12611 | . . . . 5 ⊢ (𝐿 ∈ ℕ0 → 𝐿 ∈ ℤ) | |
| 6 | 5 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → 𝐿 ∈ ℤ) |
| 7 | 3, 4, 6 | 3jca 1128 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
| 8 | 3mix3 1333 | . . . 4 ⊢ ((♯‘𝑊) < 𝐿 → (0 < 0 ∨ 𝐿 ≤ 0 ∨ (♯‘𝑊) < 𝐿)) | |
| 9 | 8 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (0 < 0 ∨ 𝐿 ≤ 0 ∨ (♯‘𝑊) < 𝐿)) |
| 10 | swrdnd 14670 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 < 0 ∨ 𝐿 ≤ 0 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr 〈0, 𝐿〉) = ∅)) | |
| 11 | 7, 9, 10 | sylc 65 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 substr 〈0, 𝐿〉) = ∅) |
| 12 | 2, 11 | eqtrd 2770 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∅c0 4308 〈cop 4607 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 0cc0 11127 < clt 11267 ≤ cle 11268 ℕ0cn0 12499 ℤcz 12586 ♯chash 14346 Word cword 14529 substr csubstr 14656 prefix cpfx 14686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 df-substr 14657 df-pfx 14687 |
| This theorem is referenced by: pfxnd0 14704 |
| Copyright terms: Public domain | W3C validator |