Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxnd Structured version   Visualization version   GIF version

Theorem pfxnd 14057
 Description: The value of a prefix operation for a length argument larger than the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6682). (Contributed by AV, 3-May-2020.)
Assertion
Ref Expression
pfxnd ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅)

Proof of Theorem pfxnd
StepHypRef Expression
1 pfxval 14043 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
213adant3 1129 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = (𝑊 substr ⟨0, 𝐿⟩))
3 simp1 1133 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → 𝑊 ∈ Word 𝑉)
4 0zd 11998 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → 0 ∈ ℤ)
5 nn0z 12010 . . . . 5 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
653ad2ant2 1131 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → 𝐿 ∈ ℤ)
73, 4, 63jca 1125 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ 𝐿 ∈ ℤ))
8 3mix3 1329 . . . 4 ((♯‘𝑊) < 𝐿 → (0 < 0 ∨ 𝐿 ≤ 0 ∨ (♯‘𝑊) < 𝐿))
983ad2ant3 1132 . . 3 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (0 < 0 ∨ 𝐿 ≤ 0 ∨ (♯‘𝑊) < 𝐿))
10 swrdnd 14024 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 < 0 ∨ 𝐿 ≤ 0 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨0, 𝐿⟩) = ∅))
117, 9, 10sylc 65 . 2 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨0, 𝐿⟩) = ∅)
122, 11eqtrd 2833 1 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ w3o 1083   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∅c0 4245  ⟨cop 4533   class class class wbr 5033  ‘cfv 6329  (class class class)co 7142  0cc0 10541   < clt 10679   ≤ cle 10680  ℕ0cn0 11900  ℤcz 11986  ♯chash 13703  Word cword 13874   substr csubstr 14010   prefix cpfx 14040 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-1st 7681  df-2nd 7682  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-card 9367  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-n0 11901  df-z 11987  df-uz 12249  df-fz 12903  df-fzo 13046  df-hash 13704  df-word 13875  df-substr 14011  df-pfx 14041 This theorem is referenced by:  pfxnd0  14058
 Copyright terms: Public domain W3C validator