Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg19 Structured version   Visualization version   GIF version

Theorem cdlemg19 36489
Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg19 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Distinct variable groups:   𝐴,𝑟   𝐺,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟   𝐹,𝑟
Allowed substitution hints:   𝑅(𝑟)   𝑇(𝑟)   𝐻(𝑟)   𝐾(𝑟)   (𝑟)

Proof of Theorem cdlemg19
StepHypRef Expression
1 simp11l 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
2 hllat 35168 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
31, 2syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ Lat)
4 simp12l 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
5 simp11 1245 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simp21 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹𝑇𝐺𝑇))
7 cdlemg12.l . . . . . 6 = (le‘𝐾)
8 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
117, 8, 9, 10ltrncoat 35948 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
125, 6, 4, 11syl3anc 1476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
13 eqid 2771 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
14 cdlemg12.j . . . . 5 = (join‘𝐾)
1513, 14, 8hlatjcl 35171 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
161, 4, 12, 15syl3anc 1476 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾))
17 simp13l 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
187, 8, 9, 10ltrncoat 35948 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑄𝐴) → (𝐹‘(𝐺𝑄)) ∈ 𝐴)
195, 6, 17, 18syl3anc 1476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐹‘(𝐺𝑄)) ∈ 𝐴)
2013, 14, 8hlatjcl 35171 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐹‘(𝐺𝑄)) ∈ 𝐴) → (𝑄 (𝐹‘(𝐺𝑄))) ∈ (Base‘𝐾))
211, 17, 19, 20syl3anc 1476 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄 (𝐹‘(𝐺𝑄))) ∈ (Base‘𝐾))
22 cdlemg12.m . . . 4 = (meet‘𝐾)
2313, 22latmcom 17282 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 (𝐹‘(𝐺𝑃))) ∈ (Base‘𝐾) ∧ (𝑄 (𝐹‘(𝐺𝑄))) ∈ (Base‘𝐾)) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) = ((𝑄 (𝐹‘(𝐺𝑄))) (𝑃 (𝐹‘(𝐺𝑃)))))
243, 16, 21, 23syl3anc 1476 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) = ((𝑄 (𝐹‘(𝐺𝑄))) (𝑃 (𝐹‘(𝐺𝑃)))))
25 cdlemg12b.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
267, 14, 22, 8, 9, 10, 25cdlemg19a 36488 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) = ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊))
27 simp13 1247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
28 simp12 1246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 simp22 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
3029necomd 2998 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝑃)
31 simp21r 1375 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐺𝑇)
32 simp23 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑃) ≠ 𝑃)
337, 8, 9, 10ltrnatneq 35987 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐺𝑃) ≠ 𝑃) → (𝐺𝑄) ≠ 𝑄)
345, 31, 28, 27, 32, 33syl131anc 1489 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐺𝑄) ≠ 𝑄)
35 simp31 1251 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅𝐺) (𝑃 𝑄))
3614, 8hlatjcom 35172 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
371, 4, 17, 36syl3anc 1476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃 𝑄) = (𝑄 𝑃))
3835, 37breqtrd 4812 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑅𝐺) (𝑄 𝑃))
39 simp32 1252 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))
4014, 8hlatjcom 35172 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑄)) ∈ 𝐴) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = ((𝐹‘(𝐺𝑄)) (𝐹‘(𝐺𝑃))))
411, 12, 19, 40syl3anc 1476 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) = ((𝐹‘(𝐺𝑄)) (𝐹‘(𝐺𝑃))))
4239, 41, 373netr3d 3019 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝐹‘(𝐺𝑄)) (𝐹‘(𝐺𝑃))) ≠ (𝑄 𝑃))
43 simp33 1253 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
44 eqcom 2778 . . . . . 6 ((𝑃 𝑟) = (𝑄 𝑟) ↔ (𝑄 𝑟) = (𝑃 𝑟))
4544anbi2i 601 . . . . 5 ((¬ 𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ (¬ 𝑟 𝑊 ∧ (𝑄 𝑟) = (𝑃 𝑟)))
4645rexbii 3189 . . . 4 (∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)) ↔ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑄 𝑟) = (𝑃 𝑟)))
4743, 46sylnib 317 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑄 𝑟) = (𝑃 𝑟)))
487, 14, 22, 8, 9, 10, 25cdlemg19a 36488 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑄𝑃 ∧ (𝐺𝑄) ≠ 𝑄) ∧ ((𝑅𝐺) (𝑄 𝑃) ∧ ((𝐹‘(𝐺𝑄)) (𝐹‘(𝐺𝑃))) ≠ (𝑄 𝑃) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑄 𝑟) = (𝑃 𝑟)))) → ((𝑄 (𝐹‘(𝐺𝑄))) (𝑃 (𝐹‘(𝐺𝑃)))) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
495, 27, 28, 6, 30, 34, 38, 42, 47, 48syl333anc 1508 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑄 (𝐹‘(𝐺𝑄))) (𝑃 (𝐹‘(𝐺𝑃)))) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
5024, 26, 493eqtr3d 2813 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝐹𝑇𝐺𝑇) ∧ 𝑃𝑄 ∧ (𝐺𝑃) ≠ 𝑃) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062   class class class wbr 4786  cfv 6031  (class class class)co 6792  Basecbs 16063  lecple 16155  joincjn 17151  meetcmee 17152  Latclat 17252  Atomscatm 35068  HLchlt 35155  LHypclh 35788  LTrncltrn 35905  trLctrl 35963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-riotaBAD 34757
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-undef 7550  df-map 8010  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34981  df-ol 34983  df-oml 34984  df-covers 35071  df-ats 35072  df-atl 35103  df-cvlat 35127  df-hlat 35156  df-llines 35302  df-lplanes 35303  df-lvols 35304  df-lines 35305  df-psubsp 35307  df-pmap 35308  df-padd 35600  df-lhyp 35792  df-laut 35793  df-ldil 35908  df-ltrn 35909  df-trl 35964
This theorem is referenced by:  cdlemg20  36490  cdlemg21  36491
  Copyright terms: Public domain W3C validator