![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2g | Structured version Visualization version GIF version |
Description: Lemma for lclkr 40915. Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | β’ π» = (LHypβπΎ) |
lclkrlem2f.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2f.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2f.v | β’ π = (Baseβπ) |
lclkrlem2f.s | β’ π = (Scalarβπ) |
lclkrlem2f.q | β’ π = (0gβπ) |
lclkrlem2f.z | β’ 0 = (0gβπ) |
lclkrlem2f.a | β’ β = (LSSumβπ) |
lclkrlem2f.n | β’ π = (LSpanβπ) |
lclkrlem2f.f | β’ πΉ = (LFnlβπ) |
lclkrlem2f.j | β’ π½ = (LSHypβπ) |
lclkrlem2f.l | β’ πΏ = (LKerβπ) |
lclkrlem2f.d | β’ π· = (LDualβπ) |
lclkrlem2f.p | β’ + = (+gβπ·) |
lclkrlem2f.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2f.b | β’ (π β π΅ β (π β { 0 })) |
lclkrlem2f.e | β’ (π β πΈ β πΉ) |
lclkrlem2f.g | β’ (π β πΊ β πΉ) |
lclkrlem2f.le | β’ (π β (πΏβπΈ) = ( β₯ β{π})) |
lclkrlem2f.lg | β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
lclkrlem2f.kb | β’ (π β ((πΈ + πΊ)βπ΅) = π) |
lclkrlem2f.nx | β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
lclkrlem2f.x | β’ (π β π β (π β { 0 })) |
lclkrlem2f.y | β’ (π β π β (π β { 0 })) |
lclkrlem2f.ne | β’ (π β (πΏβπΈ) β (πΏβπΊ)) |
lclkrlem2f.lp | β’ (π β (πΏβ(πΈ + πΊ)) β π½) |
Ref | Expression |
---|---|
lclkrlem2g | β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | lclkrlem2f.o | . . . . 5 β’ β₯ = ((ocHβπΎ)βπ) | |
3 | lclkrlem2f.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
4 | lclkrlem2f.v | . . . . 5 β’ π = (Baseβπ) | |
5 | lclkrlem2f.s | . . . . 5 β’ π = (Scalarβπ) | |
6 | lclkrlem2f.q | . . . . 5 β’ π = (0gβπ) | |
7 | lclkrlem2f.z | . . . . 5 β’ 0 = (0gβπ) | |
8 | lclkrlem2f.a | . . . . 5 β’ β = (LSSumβπ) | |
9 | lclkrlem2f.n | . . . . 5 β’ π = (LSpanβπ) | |
10 | lclkrlem2f.f | . . . . 5 β’ πΉ = (LFnlβπ) | |
11 | lclkrlem2f.j | . . . . 5 β’ π½ = (LSHypβπ) | |
12 | lclkrlem2f.l | . . . . 5 β’ πΏ = (LKerβπ) | |
13 | lclkrlem2f.d | . . . . 5 β’ π· = (LDualβπ) | |
14 | lclkrlem2f.p | . . . . 5 β’ + = (+gβπ·) | |
15 | lclkrlem2f.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
16 | lclkrlem2f.b | . . . . 5 β’ (π β π΅ β (π β { 0 })) | |
17 | lclkrlem2f.e | . . . . 5 β’ (π β πΈ β πΉ) | |
18 | lclkrlem2f.g | . . . . 5 β’ (π β πΊ β πΉ) | |
19 | lclkrlem2f.le | . . . . 5 β’ (π β (πΏβπΈ) = ( β₯ β{π})) | |
20 | lclkrlem2f.lg | . . . . 5 β’ (π β (πΏβπΊ) = ( β₯ β{π})) | |
21 | lclkrlem2f.kb | . . . . 5 β’ (π β ((πΈ + πΊ)βπ΅) = π) | |
22 | lclkrlem2f.nx | . . . . 5 β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) | |
23 | lclkrlem2f.x | . . . . 5 β’ (π β π β (π β { 0 })) | |
24 | lclkrlem2f.y | . . . . 5 β’ (π β π β (π β { 0 })) | |
25 | lclkrlem2f.ne | . . . . 5 β’ (π β (πΏβπΈ) β (πΏβπΊ)) | |
26 | lclkrlem2f.lp | . . . . 5 β’ (π β (πΏβ(πΈ + πΊ)) β π½) | |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 | lclkrlem2f 40894 | . . . 4 β’ (π β (((πΏβπΈ) β© (πΏβπΊ)) β (πβ{π΅})) β (πΏβ(πΈ + πΊ))) |
28 | 1, 3, 15 | dvhlvec 40491 | . . . . 5 β’ (π β π β LVec) |
29 | 19, 20 | ineq12d 4208 | . . . . . . 7 β’ (π β ((πΏβπΈ) β© (πΏβπΊ)) = (( β₯ β{π}) β© ( β₯ β{π}))) |
30 | 29 | oveq1d 7419 | . . . . . 6 β’ (π β (((πΏβπΈ) β© (πΏβπΊ)) β (πβ{π΅})) = ((( β₯ β{π}) β© ( β₯ β{π})) β (πβ{π΅}))) |
31 | eqid 2726 | . . . . . . 7 β’ (LSAtomsβπ) = (LSAtomsβπ) | |
32 | 25, 19, 20 | 3netr3d 3011 | . . . . . . 7 β’ (π β ( β₯ β{π}) β ( β₯ β{π})) |
33 | 1, 2, 3, 4, 7, 8, 9, 31, 15, 16, 23, 24, 32, 22, 11 | lclkrlem2c 40891 | . . . . . 6 β’ (π β ((( β₯ β{π}) β© ( β₯ β{π})) β (πβ{π΅})) β π½) |
34 | 30, 33 | eqeltrd 2827 | . . . . 5 β’ (π β (((πΏβπΈ) β© (πΏβπΊ)) β (πβ{π΅})) β π½) |
35 | 11, 28, 34, 26 | lshpcmp 38369 | . . . 4 β’ (π β ((((πΏβπΈ) β© (πΏβπΊ)) β (πβ{π΅})) β (πΏβ(πΈ + πΊ)) β (((πΏβπΈ) β© (πΏβπΊ)) β (πβ{π΅})) = (πΏβ(πΈ + πΊ)))) |
36 | 27, 35 | mpbid 231 | . . 3 β’ (π β (((πΏβπΈ) β© (πΏβπΊ)) β (πβ{π΅})) = (πΏβ(πΈ + πΊ))) |
37 | eqid 2726 | . . . . 5 β’ ((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) | |
38 | 1, 2, 3, 4, 7, 8, 9, 31, 15, 16, 23, 24, 32, 22, 37 | lclkrlem2d 40892 | . . . 4 β’ (π β ((( β₯ β{π}) β© ( β₯ β{π})) β (πβ{π΅})) β ran ((DIsoHβπΎ)βπ)) |
39 | 30, 38 | eqeltrd 2827 | . . 3 β’ (π β (((πΏβπΈ) β© (πΏβπΊ)) β (πβ{π΅})) β ran ((DIsoHβπΎ)βπ)) |
40 | 36, 39 | eqeltrrd 2828 | . 2 β’ (π β (πΏβ(πΈ + πΊ)) β ran ((DIsoHβπΎ)βπ)) |
41 | 1, 3, 37, 4 | dihrnss 40660 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (πΏβ(πΈ + πΊ)) β ran ((DIsoHβπΎ)βπ)) β (πΏβ(πΈ + πΊ)) β π) |
42 | 15, 40, 41 | syl2anc 583 | . . 3 β’ (π β (πΏβ(πΈ + πΊ)) β π) |
43 | 1, 37, 3, 4, 2, 15, 42 | dochoccl 40751 | . 2 β’ (π β ((πΏβ(πΈ + πΊ)) β ran ((DIsoHβπΎ)βπ) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ)))) |
44 | 40, 43 | mpbid 231 | 1 β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β¨ wo 844 = wceq 1533 β wcel 2098 β wne 2934 β cdif 3940 β© cin 3942 β wss 3943 {csn 4623 ran crn 5670 βcfv 6536 (class class class)co 7404 Basecbs 17151 +gcplusg 17204 Scalarcsca 17207 0gc0g 17392 LSSumclsm 19552 LSpanclspn 20816 LSAtomsclsa 38355 LSHypclsh 38356 LFnlclfn 38438 LKerclk 38466 LDualcld 38504 HLchlt 38731 LHypclh 39366 DVecHcdvh 40460 DIsoHcdih 40610 ocHcoch 40729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-riotaBAD 38334 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-undef 8256 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-mre 17537 df-mrc 17538 df-acs 17540 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19048 df-cntz 19231 df-oppg 19260 df-lsm 19554 df-cmn 19700 df-abl 19701 df-mgp 20038 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20234 df-dvdsr 20257 df-unit 20258 df-invr 20288 df-dvr 20301 df-drng 20587 df-lmod 20706 df-lss 20777 df-lsp 20817 df-lvec 20949 df-lsatoms 38357 df-lshyp 38358 df-lcv 38400 df-lfl 38439 df-lkr 38467 df-ldual 38505 df-oposet 38557 df-ol 38559 df-oml 38560 df-covers 38647 df-ats 38648 df-atl 38679 df-cvlat 38703 df-hlat 38732 df-llines 38880 df-lplanes 38881 df-lvols 38882 df-lines 38883 df-psubsp 38885 df-pmap 38886 df-padd 39178 df-lhyp 39370 df-laut 39371 df-ldil 39486 df-ltrn 39487 df-trl 39541 df-tgrp 40125 df-tendo 40137 df-edring 40139 df-dveca 40385 df-disoa 40411 df-dvech 40461 df-dib 40521 df-dic 40555 df-dih 40611 df-doch 40730 df-djh 40777 |
This theorem is referenced by: lclkrlem2h 40896 |
Copyright terms: Public domain | W3C validator |