![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2g | Structured version Visualization version GIF version |
Description: Lemma for lclkr 37546. Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2f.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2f.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2f.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2f.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2f.q | ⊢ 𝑄 = (0g‘𝑆) |
lclkrlem2f.z | ⊢ 0 = (0g‘𝑈) |
lclkrlem2f.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2f.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2f.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2f.j | ⊢ 𝐽 = (LSHyp‘𝑈) |
lclkrlem2f.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2f.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2f.p | ⊢ + = (+g‘𝐷) |
lclkrlem2f.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2f.b | ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2f.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2f.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2f.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2f.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2f.kb | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
lclkrlem2f.nx | ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
lclkrlem2f.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2f.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2f.ne | ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) |
lclkrlem2f.lp | ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) |
Ref | Expression |
---|---|
lclkrlem2g | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lclkrlem2f.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lclkrlem2f.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lclkrlem2f.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lclkrlem2f.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
6 | lclkrlem2f.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑆) | |
7 | lclkrlem2f.z | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
8 | lclkrlem2f.a | . . . . 5 ⊢ ⊕ = (LSSum‘𝑈) | |
9 | lclkrlem2f.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | lclkrlem2f.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
11 | lclkrlem2f.j | . . . . 5 ⊢ 𝐽 = (LSHyp‘𝑈) | |
12 | lclkrlem2f.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
13 | lclkrlem2f.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
14 | lclkrlem2f.p | . . . . 5 ⊢ + = (+g‘𝐷) | |
15 | lclkrlem2f.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
16 | lclkrlem2f.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) | |
17 | lclkrlem2f.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
18 | lclkrlem2f.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
19 | lclkrlem2f.le | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
20 | lclkrlem2f.lg | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
21 | lclkrlem2f.kb | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) | |
22 | lclkrlem2f.nx | . . . . 5 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | |
23 | lclkrlem2f.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
24 | lclkrlem2f.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
25 | lclkrlem2f.ne | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) | |
26 | lclkrlem2f.lp | . . . . 5 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) | |
27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 | lclkrlem2f 37525 | . . . 4 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ⊆ (𝐿‘(𝐸 + 𝐺))) |
28 | 1, 3, 15 | dvhlvec 37122 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
29 | 19, 20 | ineq12d 4011 | . . . . . . 7 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) |
30 | 29 | oveq1d 6891 | . . . . . 6 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) = ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵}))) |
31 | eqid 2797 | . . . . . . 7 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
32 | 25, 19, 20 | 3netr3d 3045 | . . . . . . 7 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) |
33 | 1, 2, 3, 4, 7, 8, 9, 31, 15, 16, 23, 24, 32, 22, 11 | lclkrlem2c 37522 | . . . . . 6 ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ 𝐽) |
34 | 30, 33 | eqeltrd 2876 | . . . . 5 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ∈ 𝐽) |
35 | 11, 28, 34, 26 | lshpcmp 35001 | . . . 4 ⊢ (𝜑 → ((((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ⊆ (𝐿‘(𝐸 + 𝐺)) ↔ (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) = (𝐿‘(𝐸 + 𝐺)))) |
36 | 27, 35 | mpbid 224 | . . 3 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) = (𝐿‘(𝐸 + 𝐺))) |
37 | eqid 2797 | . . . . 5 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
38 | 1, 2, 3, 4, 7, 8, 9, 31, 15, 16, 23, 24, 32, 22, 37 | lclkrlem2d 37523 | . . . 4 ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
39 | 30, 38 | eqeltrd 2876 | . . 3 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
40 | 36, 39 | eqeltrrd 2877 | . 2 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
41 | 1, 3, 37, 4 | dihrnss 37291 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉) |
42 | 15, 40, 41 | syl2anc 580 | . . 3 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉) |
43 | 1, 37, 3, 4, 2, 15, 42 | dochoccl 37382 | . 2 ⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) ∈ ran ((DIsoH‘𝐾)‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))) |
44 | 40, 43 | mpbid 224 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 ∖ cdif 3764 ∩ cin 3766 ⊆ wss 3767 {csn 4366 ran crn 5311 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 +gcplusg 16264 Scalarcsca 16267 0gc0g 16412 LSSumclsm 18359 LSpanclspn 19289 LSAtomsclsa 34987 LSHypclsh 34988 LFnlclfn 35070 LKerclk 35098 LDualcld 35136 HLchlt 35363 LHypclh 35997 DVecHcdvh 37091 DIsoHcdih 37241 ocHcoch 37360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-riotaBAD 34966 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-tpos 7588 df-undef 7635 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-n0 11577 df-z 11663 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-0g 16414 df-mre 16558 df-mrc 16559 df-acs 16561 df-proset 17240 df-poset 17258 df-plt 17270 df-lub 17286 df-glb 17287 df-join 17288 df-meet 17289 df-p0 17351 df-p1 17352 df-lat 17358 df-clat 17420 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-subg 17901 df-cntz 18059 df-oppg 18085 df-lsm 18361 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-ring 18862 df-oppr 18936 df-dvdsr 18954 df-unit 18955 df-invr 18985 df-dvr 18996 df-drng 19064 df-lmod 19180 df-lss 19248 df-lsp 19290 df-lvec 19421 df-lsatoms 34989 df-lshyp 34990 df-lcv 35032 df-lfl 35071 df-lkr 35099 df-ldual 35137 df-oposet 35189 df-ol 35191 df-oml 35192 df-covers 35279 df-ats 35280 df-atl 35311 df-cvlat 35335 df-hlat 35364 df-llines 35511 df-lplanes 35512 df-lvols 35513 df-lines 35514 df-psubsp 35516 df-pmap 35517 df-padd 35809 df-lhyp 36001 df-laut 36002 df-ldil 36117 df-ltrn 36118 df-trl 36172 df-tgrp 36756 df-tendo 36768 df-edring 36770 df-dveca 37016 df-disoa 37042 df-dvech 37092 df-dib 37152 df-dic 37186 df-dih 37242 df-doch 37361 df-djh 37408 |
This theorem is referenced by: lclkrlem2h 37527 |
Copyright terms: Public domain | W3C validator |