|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2g | Structured version Visualization version GIF version | ||
| Description: Lemma for lclkr 41535. Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| lclkrlem2f.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| lclkrlem2f.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | 
| lclkrlem2f.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| lclkrlem2f.v | ⊢ 𝑉 = (Base‘𝑈) | 
| lclkrlem2f.s | ⊢ 𝑆 = (Scalar‘𝑈) | 
| lclkrlem2f.q | ⊢ 𝑄 = (0g‘𝑆) | 
| lclkrlem2f.z | ⊢ 0 = (0g‘𝑈) | 
| lclkrlem2f.a | ⊢ ⊕ = (LSSum‘𝑈) | 
| lclkrlem2f.n | ⊢ 𝑁 = (LSpan‘𝑈) | 
| lclkrlem2f.f | ⊢ 𝐹 = (LFnl‘𝑈) | 
| lclkrlem2f.j | ⊢ 𝐽 = (LSHyp‘𝑈) | 
| lclkrlem2f.l | ⊢ 𝐿 = (LKer‘𝑈) | 
| lclkrlem2f.d | ⊢ 𝐷 = (LDual‘𝑈) | 
| lclkrlem2f.p | ⊢ + = (+g‘𝐷) | 
| lclkrlem2f.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| lclkrlem2f.b | ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) | 
| lclkrlem2f.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) | 
| lclkrlem2f.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| lclkrlem2f.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | 
| lclkrlem2f.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | 
| lclkrlem2f.kb | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) | 
| lclkrlem2f.nx | ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | 
| lclkrlem2f.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | 
| lclkrlem2f.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | 
| lclkrlem2f.ne | ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) | 
| lclkrlem2f.lp | ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) | 
| Ref | Expression | 
|---|---|
| lclkrlem2g | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lclkrlem2f.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lclkrlem2f.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lclkrlem2f.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lclkrlem2f.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | lclkrlem2f.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 6 | lclkrlem2f.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑆) | |
| 7 | lclkrlem2f.z | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
| 8 | lclkrlem2f.a | . . . . 5 ⊢ ⊕ = (LSSum‘𝑈) | |
| 9 | lclkrlem2f.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 10 | lclkrlem2f.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 11 | lclkrlem2f.j | . . . . 5 ⊢ 𝐽 = (LSHyp‘𝑈) | |
| 12 | lclkrlem2f.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
| 13 | lclkrlem2f.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
| 14 | lclkrlem2f.p | . . . . 5 ⊢ + = (+g‘𝐷) | |
| 15 | lclkrlem2f.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 16 | lclkrlem2f.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) | |
| 17 | lclkrlem2f.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 18 | lclkrlem2f.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 19 | lclkrlem2f.le | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
| 20 | lclkrlem2f.lg | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
| 21 | lclkrlem2f.kb | . . . . 5 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) | |
| 22 | lclkrlem2f.nx | . . . . 5 ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) | |
| 23 | lclkrlem2f.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 24 | lclkrlem2f.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 25 | lclkrlem2f.ne | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) ≠ (𝐿‘𝐺)) | |
| 26 | lclkrlem2f.lp | . . . . 5 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽) | |
| 27 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 | lclkrlem2f 41514 | . . . 4 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ⊆ (𝐿‘(𝐸 + 𝐺))) | 
| 28 | 1, 3, 15 | dvhlvec 41111 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) | 
| 29 | 19, 20 | ineq12d 4221 | . . . . . . 7 ⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) = (( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌}))) | 
| 30 | 29 | oveq1d 7446 | . . . . . 6 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) = ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵}))) | 
| 31 | eqid 2737 | . . . . . . 7 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 32 | 25, 19, 20 | 3netr3d 3017 | . . . . . . 7 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ≠ ( ⊥ ‘{𝑌})) | 
| 33 | 1, 2, 3, 4, 7, 8, 9, 31, 15, 16, 23, 24, 32, 22, 11 | lclkrlem2c 41511 | . . . . . 6 ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ 𝐽) | 
| 34 | 30, 33 | eqeltrd 2841 | . . . . 5 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ∈ 𝐽) | 
| 35 | 11, 28, 34, 26 | lshpcmp 38989 | . . . 4 ⊢ (𝜑 → ((((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ⊆ (𝐿‘(𝐸 + 𝐺)) ↔ (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) = (𝐿‘(𝐸 + 𝐺)))) | 
| 36 | 27, 35 | mpbid 232 | . . 3 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) = (𝐿‘(𝐸 + 𝐺))) | 
| 37 | eqid 2737 | . . . . 5 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
| 38 | 1, 2, 3, 4, 7, 8, 9, 31, 15, 16, 23, 24, 32, 22, 37 | lclkrlem2d 41512 | . . . 4 ⊢ (𝜑 → ((( ⊥ ‘{𝑋}) ∩ ( ⊥ ‘{𝑌})) ⊕ (𝑁‘{𝐵})) ∈ ran ((DIsoH‘𝐾)‘𝑊)) | 
| 39 | 30, 38 | eqeltrd 2841 | . . 3 ⊢ (𝜑 → (((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊕ (𝑁‘{𝐵})) ∈ ran ((DIsoH‘𝐾)‘𝑊)) | 
| 40 | 36, 39 | eqeltrrd 2842 | . 2 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) | 
| 41 | 1, 3, 37, 4 | dihrnss 41280 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉) | 
| 42 | 15, 40, 41 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉) | 
| 43 | 1, 37, 3, 4, 2, 15, 42 | dochoccl 41371 | . 2 ⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) ∈ ran ((DIsoH‘𝐾)‘𝑊) ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))) | 
| 44 | 40, 43 | mpbid 232 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 ∩ cin 3950 ⊆ wss 3951 {csn 4626 ran crn 5686 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 Scalarcsca 17300 0gc0g 17484 LSSumclsm 19652 LSpanclspn 20969 LSAtomsclsa 38975 LSHypclsh 38976 LFnlclfn 39058 LKerclk 39086 LDualcld 39124 HLchlt 39351 LHypclh 39986 DVecHcdvh 41080 DIsoHcdih 41230 ocHcoch 41349 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-riotaBAD 38954 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-undef 8298 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-0g 17486 df-mre 17629 df-mrc 17630 df-acs 17632 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cntz 19335 df-oppg 19364 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-drng 20731 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lvec 21102 df-lsatoms 38977 df-lshyp 38978 df-lcv 39020 df-lfl 39059 df-lkr 39087 df-ldual 39125 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 df-tgrp 40745 df-tendo 40757 df-edring 40759 df-dveca 41005 df-disoa 41031 df-dvech 41081 df-dib 41141 df-dic 41175 df-dih 41231 df-doch 41350 df-djh 41397 | 
| This theorem is referenced by: lclkrlem2h 41516 | 
| Copyright terms: Public domain | W3C validator |