Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (πΎ β HL β§ π β π»)) |
2 | | simp2r 1199 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
3 | | simp2l 1198 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (π β π΄ β§ Β¬ π β€ π)) |
4 | | simp31 1208 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β πΉ β π) |
5 | | simp32 1209 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β πΊ β π) |
6 | | simp33 1210 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π)) |
7 | | simp1l 1196 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β πΎ β HL) |
8 | | simp2ll 1239 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β π β π΄) |
9 | | cdlemg8.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
10 | | cdlemg8.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
11 | | cdlemg8.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
12 | | cdlemg8.t |
. . . . . 6
β’ π = ((LTrnβπΎ)βπ) |
13 | 9, 10, 11, 12 | ltrncoat 39319 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β (πΉβ(πΊβπ)) β π΄) |
14 | 1, 4, 5, 8, 13 | syl121anc 1374 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (πΉβ(πΊβπ)) β π΄) |
15 | | simp2rl 1241 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β π β π΄) |
16 | 9, 10, 11, 12 | ltrncoat 39319 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ π β π΄) β (πΉβ(πΊβπ)) β π΄) |
17 | 1, 4, 5, 15, 16 | syl121anc 1374 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (πΉβ(πΊβπ)) β π΄) |
18 | | cdlemg8.j |
. . . . 5
β’ β¨ =
(joinβπΎ) |
19 | 18, 10 | hlatjcom 38542 |
. . . 4
β’ ((πΎ β HL β§ (πΉβ(πΊβπ)) β π΄ β§ (πΉβ(πΊβπ)) β π΄) β ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) = ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ)))) |
20 | 7, 14, 17, 19 | syl3anc 1370 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) = ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ)))) |
21 | 18, 10 | hlatjcom 38542 |
. . . 4
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
22 | 7, 8, 15, 21 | syl3anc 1370 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (π β¨ π) = (π β¨ π)) |
23 | 6, 20, 22 | 3netr3d 3016 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π)) |
24 | | cdlemg8.m |
. . 3
β’ β§ =
(meetβπΎ) |
25 | 9, 18, 24, 10, 11, 12 | cdlemg11a 39812 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (πΉβ(πΊβπ)) β π) |
26 | 1, 2, 3, 4, 5, 23,
25 | syl123anc 1386 |
1
β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π))) β (πΉβ(πΊβπ)) β π) |