| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | neeq2d 2985 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: neeqtrrd 2999 3netr3d 3001 xaddass2 13186 xov1plusxeqvd 13435 smndex2dnrinv 18824 ablsimpgfindlem1 20023 issubdrg 20700 qsssubdrg 21368 ply1scln0 22211 alexsublem 23964 cphsubrglem 25110 cphreccllem 25111 mdegldg 26004 nosep2o 27627 noetainflem4 27685 tglinethru 28616 footexALT 28698 footexlem2 28700 nrt2irr 30452 sdrgdvcl 33265 sdrginvcl 33266 0ringprmidl 33413 0ringmon1p 33519 irngnzply1lem 33678 irngnminplynz 33695 minplym1p 33696 minplynzm1p 33697 algextdeglem4 33703 poimirlem26 37633 lkrpssN 39149 lnatexN 39766 lhpexle2lem 39996 lhpexle3lem 39998 cdlemg47 40723 cdlemk54 40945 tendoinvcl 41091 lcdlkreqN 41609 mapdh8ab 41764 aks6d1c5lem2 42119 aks6d1c7 42165 jm2.26lem3 42983 stoweidlem36 46027 addmodne 47338 p1modne 47341 m1modne 47342 minusmod5ne 47343 gpg5nbgrvtx03starlem2 48053 gpg5nbgrvtx13starlem2 48056 |
| Copyright terms: Public domain | W3C validator |