| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | neeq2d 2985 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: neeqtrrd 2999 3netr3d 3001 xaddass2 13152 xov1plusxeqvd 13401 smndex2dnrinv 18789 ablsimpgfindlem1 19988 issubdrg 20665 qsssubdrg 21333 ply1scln0 22176 alexsublem 23929 cphsubrglem 25075 cphreccllem 25076 mdegldg 25969 nosep2o 27592 noetainflem4 27650 tglinethru 28581 footexALT 28663 footexlem2 28665 nrt2irr 30417 sdrgdvcl 33239 sdrginvcl 33240 0ringprmidl 33387 0ringmon1p 33493 irngnzply1lem 33663 irngnminplynz 33685 minplym1p 33686 minplynzm1p 33687 algextdeglem4 33693 poimirlem26 37636 lkrpssN 39152 lnatexN 39768 lhpexle2lem 39998 lhpexle3lem 40000 cdlemg47 40725 cdlemk54 40947 tendoinvcl 41093 lcdlkreqN 41611 mapdh8ab 41766 aks6d1c5lem2 42121 aks6d1c7 42167 jm2.26lem3 42984 stoweidlem36 46027 addmodne 47338 p1modne 47341 m1modne 47342 minusmod5ne 47343 gpg5nbgrvtx03starlem2 48063 gpg5nbgrvtx13starlem2 48066 gpg5edgnedg 48124 |
| Copyright terms: Public domain | W3C validator |