Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | neeq2d 3004 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
4 | 1, 3 | mpbid 231 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: neeqtrrd 3018 3netr3d 3020 xaddass2 12984 xov1plusxeqvd 13230 smndex2dnrinv 18554 ablsimpgfindlem1 19710 issubdrg 20049 qsssubdrg 20657 ply1scln0 21462 alexsublem 23195 cphsubrglem 24341 cphreccllem 24342 mdegldg 25231 tglinethru 26997 footexALT 27079 footexlem2 27081 0ringprmidl 31625 nosep2o 33885 noetainflem4 33943 poimirlem26 35803 lkrpssN 37177 lnatexN 37793 lhpexle2lem 38023 lhpexle3lem 38025 cdlemg47 38750 cdlemk54 38972 tendoinvcl 39118 lcdlkreqN 39636 mapdh8ab 39791 jm2.26lem3 40823 stoweidlem36 43577 |
Copyright terms: Public domain | W3C validator |