MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrd Structured version   Visualization version   GIF version

Theorem neeqtrd 3008
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrd.1 (𝜑𝐴𝐵)
neeqtrd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
neeqtrd (𝜑𝐴𝐶)

Proof of Theorem neeqtrd
StepHypRef Expression
1 neeqtrd.1 . 2 (𝜑𝐴𝐵)
2 neeqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
32neeq2d 2999 . 2 (𝜑 → (𝐴𝐵𝐴𝐶))
41, 3mpbid 231 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-cleq 2722  df-ne 2939
This theorem is referenced by:  neeqtrrd  3013  3netr3d  3015  xaddass2  13233  xov1plusxeqvd  13479  smndex2dnrinv  18832  ablsimpgfindlem1  20018  issubdrg  20544  qsssubdrg  21204  ply1scln0  22034  alexsublem  23768  cphsubrglem  24925  cphreccllem  24926  mdegldg  25819  nosep2o  27421  noetainflem4  27479  tglinethru  28154  footexALT  28236  footexlem2  28238  nrt2irr  29993  sdrgdvcl  32667  sdrginvcl  32668  0ringprmidl  32842  0ringmon1p  32910  irngnzply1lem  33043  irngnminplynz  33060  minplym1p  33061  algextdeglem4  33065  poimirlem26  36817  lkrpssN  38336  lnatexN  38953  lhpexle2lem  39183  lhpexle3lem  39185  cdlemg47  39910  cdlemk54  40132  tendoinvcl  40278  lcdlkreqN  40796  mapdh8ab  40951  jm2.26lem3  42042  stoweidlem36  45050
  Copyright terms: Public domain W3C validator