| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | neeq2d 2988 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ne 2929 |
| This theorem is referenced by: neeqtrrd 3002 3netr3d 3004 xaddass2 13149 xov1plusxeqvd 13398 smndex2dnrinv 18823 ablsimpgfindlem1 20021 issubdrg 20695 qsssubdrg 21363 ply1scln0 22206 alexsublem 23959 cphsubrglem 25104 cphreccllem 25105 mdegldg 25998 nosep2o 27621 noetainflem4 27679 tglinethru 28614 footexALT 28696 footexlem2 28698 nrt2irr 30453 sdrgdvcl 33265 sdrginvcl 33266 0ringprmidl 33414 0ringmon1p 33520 irngnzply1lem 33703 irngnminplynz 33725 minplym1p 33726 minplynzm1p 33727 algextdeglem4 33733 poimirlem26 37696 lkrpssN 39272 lnatexN 39888 lhpexle2lem 40118 lhpexle3lem 40120 cdlemg47 40845 cdlemk54 41067 tendoinvcl 41213 lcdlkreqN 41731 mapdh8ab 41886 aks6d1c5lem2 42241 aks6d1c7 42287 jm2.26lem3 43104 stoweidlem36 46144 addmodne 47454 p1modne 47457 m1modne 47458 minusmod5ne 47459 gpg5nbgrvtx03starlem2 48179 gpg5nbgrvtx13starlem2 48182 gpg5edgnedg 48240 |
| Copyright terms: Public domain | W3C validator |