MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrd Structured version   Visualization version   GIF version

Theorem neeqtrd 3007
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrd.1 (𝜑𝐴𝐵)
neeqtrd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
neeqtrd (𝜑𝐴𝐶)

Proof of Theorem neeqtrd
StepHypRef Expression
1 neeqtrd.1 . 2 (𝜑𝐴𝐵)
2 neeqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
32neeq2d 2998 . 2 (𝜑 → (𝐴𝐵𝐴𝐶))
41, 3mpbid 232 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wne 2937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-cleq 2726  df-ne 2938
This theorem is referenced by:  neeqtrrd  3012  3netr3d  3014  xaddass2  13288  xov1plusxeqvd  13534  smndex2dnrinv  18940  ablsimpgfindlem1  20141  issubdrg  20797  qsssubdrg  21461  ply1scln0  22310  alexsublem  24067  cphsubrglem  25224  cphreccllem  25225  mdegldg  26119  nosep2o  27741  noetainflem4  27799  tglinethru  28658  footexALT  28740  footexlem2  28742  nrt2irr  30501  sdrgdvcl  33280  sdrginvcl  33281  0ringprmidl  33456  0ringmon1p  33562  irngnzply1lem  33704  irngnminplynz  33719  minplym1p  33720  algextdeglem4  33725  poimirlem26  37632  lkrpssN  39144  lnatexN  39761  lhpexle2lem  39991  lhpexle3lem  39993  cdlemg47  40718  cdlemk54  40940  tendoinvcl  41086  lcdlkreqN  41604  mapdh8ab  41759  aks6d1c5lem2  42119  aks6d1c7  42165  jm2.26lem3  42989  stoweidlem36  45991  addmodne  47283  p1modne  47286  m1modne  47287  minusmod5ne  47288  gpg5nbgrvtx03starlem2  47959  gpg5nbgrvtx13starlem2  47962
  Copyright terms: Public domain W3C validator