| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | neeq2d 2992 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ne 2933 |
| This theorem is referenced by: neeqtrrd 3006 3netr3d 3008 xaddass2 13266 xov1plusxeqvd 13515 smndex2dnrinv 18893 ablsimpgfindlem1 20090 issubdrg 20740 qsssubdrg 21394 ply1scln0 22229 alexsublem 23982 cphsubrglem 25129 cphreccllem 25130 mdegldg 26023 nosep2o 27646 noetainflem4 27704 tglinethru 28615 footexALT 28697 footexlem2 28699 nrt2irr 30454 sdrgdvcl 33293 sdrginvcl 33294 0ringprmidl 33464 0ringmon1p 33570 irngnzply1lem 33731 irngnminplynz 33746 minplym1p 33747 minplynzm1p 33748 algextdeglem4 33754 poimirlem26 37670 lkrpssN 39181 lnatexN 39798 lhpexle2lem 40028 lhpexle3lem 40030 cdlemg47 40755 cdlemk54 40977 tendoinvcl 41123 lcdlkreqN 41641 mapdh8ab 41796 aks6d1c5lem2 42151 aks6d1c7 42197 jm2.26lem3 43025 stoweidlem36 46065 addmodne 47373 p1modne 47376 m1modne 47377 minusmod5ne 47378 gpg5nbgrvtx03starlem2 48071 gpg5nbgrvtx13starlem2 48074 |
| Copyright terms: Public domain | W3C validator |