![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | neeq2d 3007 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ne 2947 |
This theorem is referenced by: neeqtrrd 3021 3netr3d 3023 xaddass2 13312 xov1plusxeqvd 13558 smndex2dnrinv 18950 ablsimpgfindlem1 20151 issubdrg 20803 qsssubdrg 21467 ply1scln0 22316 alexsublem 24073 cphsubrglem 25230 cphreccllem 25231 mdegldg 26125 nosep2o 27745 noetainflem4 27803 tglinethru 28662 footexALT 28744 footexlem2 28746 nrt2irr 30505 sdrgdvcl 33266 sdrginvcl 33267 0ringprmidl 33442 0ringmon1p 33548 irngnzply1lem 33690 irngnminplynz 33705 minplym1p 33706 algextdeglem4 33711 poimirlem26 37606 lkrpssN 39119 lnatexN 39736 lhpexle2lem 39966 lhpexle3lem 39968 cdlemg47 40693 cdlemk54 40915 tendoinvcl 41061 lcdlkreqN 41579 mapdh8ab 41734 aks6d1c5lem2 42095 aks6d1c7 42141 jm2.26lem3 42958 stoweidlem36 45957 |
Copyright terms: Public domain | W3C validator |