MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrd Structured version   Visualization version   GIF version

Theorem neeqtrd 2994
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrd.1 (𝜑𝐴𝐵)
neeqtrd.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
neeqtrd (𝜑𝐴𝐶)

Proof of Theorem neeqtrd
StepHypRef Expression
1 neeqtrd.1 . 2 (𝜑𝐴𝐵)
2 neeqtrd.2 . . 3 (𝜑𝐵 = 𝐶)
32neeq2d 2985 . 2 (𝜑 → (𝐴𝐵𝐴𝐶))
41, 3mpbid 232 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ne 2926
This theorem is referenced by:  neeqtrrd  2999  3netr3d  3001  xaddass2  13210  xov1plusxeqvd  13459  smndex2dnrinv  18842  ablsimpgfindlem1  20039  issubdrg  20689  qsssubdrg  21343  ply1scln0  22178  alexsublem  23931  cphsubrglem  25077  cphreccllem  25078  mdegldg  25971  nosep2o  27594  noetainflem4  27652  tglinethru  28563  footexALT  28645  footexlem2  28647  nrt2irr  30402  sdrgdvcl  33249  sdrginvcl  33250  0ringprmidl  33420  0ringmon1p  33526  irngnzply1lem  33685  irngnminplynz  33702  minplym1p  33703  minplynzm1p  33704  algextdeglem4  33710  poimirlem26  37640  lkrpssN  39156  lnatexN  39773  lhpexle2lem  40003  lhpexle3lem  40005  cdlemg47  40730  cdlemk54  40952  tendoinvcl  41098  lcdlkreqN  41616  mapdh8ab  41771  aks6d1c5lem2  42126  aks6d1c7  42172  jm2.26lem3  42990  stoweidlem36  46034  addmodne  47345  p1modne  47348  m1modne  47349  minusmod5ne  47350  gpg5nbgrvtx03starlem2  48060  gpg5nbgrvtx13starlem2  48063
  Copyright terms: Public domain W3C validator