| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | neeq2d 2985 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ne 2926 |
| This theorem is referenced by: neeqtrrd 2999 3netr3d 3001 xaddass2 13210 xov1plusxeqvd 13459 smndex2dnrinv 18842 ablsimpgfindlem1 20039 issubdrg 20689 qsssubdrg 21343 ply1scln0 22178 alexsublem 23931 cphsubrglem 25077 cphreccllem 25078 mdegldg 25971 nosep2o 27594 noetainflem4 27652 tglinethru 28563 footexALT 28645 footexlem2 28647 nrt2irr 30402 sdrgdvcl 33249 sdrginvcl 33250 0ringprmidl 33420 0ringmon1p 33526 irngnzply1lem 33685 irngnminplynz 33702 minplym1p 33703 minplynzm1p 33704 algextdeglem4 33710 poimirlem26 37640 lkrpssN 39156 lnatexN 39773 lhpexle2lem 40003 lhpexle3lem 40005 cdlemg47 40730 cdlemk54 40952 tendoinvcl 41098 lcdlkreqN 41616 mapdh8ab 41771 aks6d1c5lem2 42126 aks6d1c7 42172 jm2.26lem3 42990 stoweidlem36 46034 addmodne 47345 p1modne 47348 m1modne 47349 minusmod5ne 47350 gpg5nbgrvtx03starlem2 48060 gpg5nbgrvtx13starlem2 48063 |
| Copyright terms: Public domain | W3C validator |