![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | neeq2d 2998 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ne 2938 |
This theorem is referenced by: neeqtrrd 3012 3netr3d 3014 xaddass2 13288 xov1plusxeqvd 13534 smndex2dnrinv 18940 ablsimpgfindlem1 20141 issubdrg 20797 qsssubdrg 21461 ply1scln0 22310 alexsublem 24067 cphsubrglem 25224 cphreccllem 25225 mdegldg 26119 nosep2o 27741 noetainflem4 27799 tglinethru 28658 footexALT 28740 footexlem2 28742 nrt2irr 30501 sdrgdvcl 33280 sdrginvcl 33281 0ringprmidl 33456 0ringmon1p 33562 irngnzply1lem 33704 irngnminplynz 33719 minplym1p 33720 algextdeglem4 33725 poimirlem26 37632 lkrpssN 39144 lnatexN 39761 lhpexle2lem 39991 lhpexle3lem 39993 cdlemg47 40718 cdlemk54 40940 tendoinvcl 41086 lcdlkreqN 41604 mapdh8ab 41759 aks6d1c5lem2 42119 aks6d1c7 42165 jm2.26lem3 42989 stoweidlem36 45991 addmodne 47283 p1modne 47286 m1modne 47287 minusmod5ne 47288 gpg5nbgrvtx03starlem2 47959 gpg5nbgrvtx13starlem2 47962 |
Copyright terms: Public domain | W3C validator |