Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
Ref | Expression |
---|---|
neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | neeq2d 3003 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
4 | 1, 3 | mpbid 231 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ne 2943 |
This theorem is referenced by: neeqtrrd 3017 3netr3d 3019 xaddass2 12913 xov1plusxeqvd 13159 smndex2dnrinv 18469 ablsimpgfindlem1 19625 issubdrg 19964 qsssubdrg 20569 ply1scln0 21372 alexsublem 23103 cphsubrglem 24246 cphreccllem 24247 mdegldg 25136 tglinethru 26901 footexALT 26983 footexlem2 26985 0ringprmidl 31527 nosep2o 33812 noetainflem4 33870 poimirlem26 35730 lkrpssN 37104 lnatexN 37720 lhpexle2lem 37950 lhpexle3lem 37952 cdlemg47 38677 cdlemk54 38899 tendoinvcl 39045 lcdlkreqN 39563 mapdh8ab 39718 jm2.26lem3 40739 stoweidlem36 43467 |
Copyright terms: Public domain | W3C validator |