| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neeqtrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.) |
| Ref | Expression |
|---|---|
| neeqtrd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| neeqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| neeqtrd | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | neeqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | neeq2d 2986 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ne 2927 |
| This theorem is referenced by: neeqtrrd 3000 3netr3d 3002 xaddass2 13217 xov1plusxeqvd 13466 smndex2dnrinv 18849 ablsimpgfindlem1 20046 issubdrg 20696 qsssubdrg 21350 ply1scln0 22185 alexsublem 23938 cphsubrglem 25084 cphreccllem 25085 mdegldg 25978 nosep2o 27601 noetainflem4 27659 tglinethru 28570 footexALT 28652 footexlem2 28654 nrt2irr 30409 sdrgdvcl 33256 sdrginvcl 33257 0ringprmidl 33427 0ringmon1p 33533 irngnzply1lem 33692 irngnminplynz 33709 minplym1p 33710 minplynzm1p 33711 algextdeglem4 33717 poimirlem26 37647 lkrpssN 39163 lnatexN 39780 lhpexle2lem 40010 lhpexle3lem 40012 cdlemg47 40737 cdlemk54 40959 tendoinvcl 41105 lcdlkreqN 41623 mapdh8ab 41778 aks6d1c5lem2 42133 aks6d1c7 42179 jm2.26lem3 42997 stoweidlem36 46041 addmodne 47349 p1modne 47352 m1modne 47353 minusmod5ne 47354 gpg5nbgrvtx03starlem2 48064 gpg5nbgrvtx13starlem2 48067 |
| Copyright terms: Public domain | W3C validator |