Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem29 Structured version   Visualization version   GIF version

Theorem mapdpglem29 41701
Description: Lemma for mapdpg 41707. Baer p. 45 line 16: "But Gx' and Gy'' are distinct points and so x' and y'' are independent elements in B. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpgem25.h1 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
mapdpgem25.i1 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
mapdpglem26.a 𝐴 = (Scalar‘𝑈)
mapdpglem26.b 𝐵 = (Base‘𝐴)
mapdpglem26.t · = ( ·𝑠𝐶)
mapdpglem26.o 𝑂 = (0g𝐴)
mapdpglem28.ve (𝜑𝑣𝐵)
mapdpglem28.u1 (𝜑 = (𝑢 · 𝑖))
mapdpglem28.u2 (𝜑 → (𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
Assertion
Ref Expression
mapdpglem29 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝑖}))
Distinct variable groups:   ,𝑖,𝑢,𝑣   𝑢,𝐵,𝑣   𝑢,𝐶,𝑣   𝑢,𝑂,𝑣   𝑢, · ,𝑣   𝑣,𝐺   𝑣,𝑅
Allowed substitution hints:   𝜑(𝑣,𝑢,,𝑖)   𝐴(𝑣,𝑢,,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝑅(𝑢,,𝑖)   · (,𝑖)   𝑈(𝑣,𝑢,,𝑖)   𝐹(𝑣,𝑢,,𝑖)   𝐺(𝑢,,𝑖)   𝐻(𝑣,𝑢,,𝑖)   𝐽(𝑣,𝑢,,𝑖)   𝐾(𝑣,𝑢,,𝑖)   𝑀(𝑣,𝑢,,𝑖)   (𝑣,𝑢,,𝑖)   𝑁(𝑣,𝑢,,𝑖)   𝑂(,𝑖)   𝑉(𝑣,𝑢,,𝑖)   𝑊(𝑣,𝑢,,𝑖)   𝑋(𝑣,𝑢,,𝑖)   𝑌(𝑣,𝑢,,𝑖)   0 (𝑣,𝑢,,𝑖)

Proof of Theorem mapdpglem29
StepHypRef Expression
1 mapdpg.ne . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 mapdpg.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdpg.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2730 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdpg.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
6 mapdpg.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
72, 3, 6dvhlmod 41111 . . . . . 6 (𝜑𝑈 ∈ LMod)
8 mapdpg.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
98eldifad 3929 . . . . . 6 (𝜑𝑋𝑉)
10 mapdpg.v . . . . . . 7 𝑉 = (Base‘𝑈)
11 mapdpg.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
1210, 4, 11lspsncl 20890 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
137, 9, 12syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
14 mapdpg.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1514eldifad 3929 . . . . . 6 (𝜑𝑌𝑉)
1610, 4, 11lspsncl 20890 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
177, 15, 16syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
182, 3, 4, 5, 6, 13, 17mapd11 41640 . . . 4 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) = (𝑀‘(𝑁‘{𝑌})) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
1918necon3bid 2970 . . 3 (𝜑 → ((𝑀‘(𝑁‘{𝑋})) ≠ (𝑀‘(𝑁‘{𝑌})) ↔ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})))
201, 19mpbird 257 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) ≠ (𝑀‘(𝑁‘{𝑌})))
21 mapdpg.e . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
22 mapdpgem25.i1 . . . 4 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
2322simprd 495 . . 3 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
2423simpld 494 . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}))
2520, 21, 243netr3d 3002 1 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝑖}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  -gcsg 18874  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  LCDualclcd 41587  mapdcmpd 41625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lshyp 38977  df-lfl 39058  df-lkr 39086  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tgrp 40744  df-tendo 40756  df-edring 40758  df-dveca 41004  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230  df-doch 41349  df-djh 41396  df-mapd 41626
This theorem is referenced by:  mapdpglem30  41703
  Copyright terms: Public domain W3C validator