![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmopfne | Structured version Visualization version GIF version |
Description: The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 3-Oct-2021.) |
Ref | Expression |
---|---|
clmopfne.t | ⊢ · = ( ·sf ‘𝑊) |
clmopfne.a | ⊢ + = (+𝑓‘𝑊) |
Ref | Expression |
---|---|
clmopfne | ⊢ (𝑊 ∈ ℂMod → + ≠ · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmlmod 24815 | . 2 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
2 | ax-1ne0 11183 | . . . 4 ⊢ 1 ≠ 0 | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑊 ∈ ℂMod → 1 ≠ 0) |
4 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | 4 | clm1 24821 | . . 3 ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘(Scalar‘𝑊))) |
6 | 4 | clm0 24820 | . . 3 ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊))) |
7 | 3, 5, 6 | 3netr3d 3016 | . 2 ⊢ (𝑊 ∈ ℂMod → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) |
8 | clmopfne.t | . . 3 ⊢ · = ( ·sf ‘𝑊) | |
9 | clmopfne.a | . . 3 ⊢ + = (+𝑓‘𝑊) | |
10 | eqid 2731 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
11 | eqid 2731 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
12 | eqid 2731 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
13 | eqid 2731 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
14 | 8, 9, 10, 4, 11, 12, 13 | lmodfopne 20655 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) → + ≠ · ) |
15 | 1, 7, 14 | syl2anc 583 | 1 ⊢ (𝑊 ∈ ℂMod → + ≠ · ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ‘cfv 6543 0cc0 11114 1c1 11115 Basecbs 17149 Scalarcsca 17205 0gc0g 17390 +𝑓cplusf 18563 1rcur 20076 LModclmod 20615 ·sf cscaf 20616 ℂModcclm 24810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-addf 11193 ax-mulf 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-plusf 18565 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-subrg 20460 df-lmod 20617 df-scaf 20618 df-cnfld 21146 df-clm 24811 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |