MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0re Structured version   Visualization version   GIF version

Theorem dchrisum0re 26661
Description: Suppose 𝑋 is a non-principal Dirichlet character with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Then 𝑋 is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0re (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0re
Dummy variables 𝑘 𝑛 𝑥 𝑓 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum2.g . . . 4 𝐺 = (DChr‘𝑁)
2 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 rpvmasum2.d . . . 4 𝐷 = (Base‘𝐺)
4 eqid 2738 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 rpvmasum2.w . . . . . . 7 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
65ssrab3 4015 . . . . . 6 𝑊 ⊆ (𝐷 ∖ { 1 })
7 dchrisum0.b . . . . . 6 (𝜑𝑋𝑊)
86, 7sselid 3919 . . . . 5 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
98eldifad 3899 . . . 4 (𝜑𝑋𝐷)
101, 2, 3, 4, 9dchrf 26390 . . 3 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
1110ffnd 6601 . 2 (𝜑𝑋 Fn (Base‘𝑍))
1210ffvelrnda 6961 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
13 fvco3 6867 . . . . . 6 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
1410, 13sylan 580 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
15 logno1 25791 . . . . . . . 8 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
16 1red 10976 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → 1 ∈ ℝ)
17 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
18 rpvmasum.a . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
19 rpvmasum2.1 . . . . . . . . . . . . 13 1 = (0g𝐺)
20 eqid 2738 . . . . . . . . . . . . 13 (Unit‘𝑍) = (Unit‘𝑍)
2118nnnn0d 12293 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
222zncrng 20752 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ CRing)
24 crngring 19795 . . . . . . . . . . . . . . 15 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ Ring)
26 eqid 2738 . . . . . . . . . . . . . . 15 (1r𝑍) = (1r𝑍)
2720, 261unit 19900 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring → (1r𝑍) ∈ (Unit‘𝑍))
2825, 27syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑍) ∈ (Unit‘𝑍))
29 eqid 2738 . . . . . . . . . . . . 13 (𝐿 “ {(1r𝑍)}) = (𝐿 “ {(1r𝑍)})
30 eqidd 2739 . . . . . . . . . . . . 13 ((𝜑𝑓𝑊) → (1r𝑍) = (1r𝑍))
312, 17, 18, 1, 3, 19, 5, 20, 28, 29, 30rpvmasum2 26660 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3231adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3318phicld 16473 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
3433nnnn0d 12293 . . . . . . . . . . . . . . . . 17 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
3534adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ0)
3635nn0red 12294 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℝ)
37 fzfid 13693 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
38 inss1 4162 . . . . . . . . . . . . . . . . 17 ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))
39 ssfi 8956 . . . . . . . . . . . . . . . . 17 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
4037, 38, 39sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
41 elinel1 4129 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) → 𝑛 ∈ (1...(⌊‘𝑥)))
42 elfznn 13285 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
4342adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4441, 43sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℕ)
45 vmacl 26267 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
46 nndivre 12014 . . . . . . . . . . . . . . . . . 18 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4745, 46mpancom 685 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4844, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4940, 48fsumrecl 15446 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
5036, 49remulcld 11005 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
51 relogcl 25731 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
5251adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
53 1re 10975 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
541, 3dchrfi 26403 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
5518, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ Fin)
56 difss 4066 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∖ { 1 }) ⊆ 𝐷
576, 56sstri 3930 . . . . . . . . . . . . . . . . . . . 20 𝑊𝐷
58 ssfi 8956 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
5955, 57, 58sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑊 ∈ Fin)
60 hashcl 14071 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝑊) ∈ ℕ0)
6261nn0red 12294 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑊) ∈ ℝ)
63 resubcl 11285 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (1 − (♯‘𝑊)) ∈ ℝ)
6453, 62, 63sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − (♯‘𝑊)) ∈ ℝ)
6564adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (1 − (♯‘𝑊)) ∈ ℝ)
6652, 65remulcld 11005 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
6750, 66resubcld 11403 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
6867recnd 11003 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
6968adantlr 712 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
7051adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
7170recnd 11003 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
7251ad2antrl 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
7366ad2ant2r 744 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
7472, 73readdcld 11004 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
75 0red 10978 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ)
7650ad2ant2r 744 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
77 2re 12047 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
7962ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℝ)
8078, 79resubcld 11403 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ∈ ℝ)
81 log1 25741 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
82 simprr 770 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
83 1rp 12734 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
84 simprl 768 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
85 logleb 25758 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8683, 84, 85sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8782, 86mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
8881, 87eqbrtrrid 5110 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
8959ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑊 ∈ Fin)
90 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (invg𝐺) = (invg𝐺)
911, 3, 9, 90dchrinv 26409 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) = (∗ ∘ 𝑋))
921dchrabl 26402 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9318, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ Abel)
94 ablgrp 19391 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ Grp)
963, 90grpinvcl 18627 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑋𝐷) → ((invg𝐺)‘𝑋) ∈ 𝐷)
9795, 9, 96syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ∈ 𝐷)
9891, 97eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
99 eldifsni 4723 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1008, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋1 )
1013, 19grpidcl 18607 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ Grp → 1𝐷)
10295, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑1𝐷)
1033, 90, 95, 9, 102grpinv11 18644 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (((invg𝐺)‘𝑋) = ((invg𝐺)‘ 1 ) ↔ 𝑋 = 1 ))
104103necon3bid 2988 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ) ↔ 𝑋1 ))
105100, 104mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ))
10619, 90grpinvid 18636 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 ∈ Grp → ((invg𝐺)‘ 1 ) = 1 )
10795, 106syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘ 1 ) = 1 )
108105, 91, 1073netr3d 3020 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ≠ 1 )
109 eldifsn 4720 . . . . . . . . . . . . . . . . . . . . 21 ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ↔ ((∗ ∘ 𝑋) ∈ 𝐷 ∧ (∗ ∘ 𝑋) ≠ 1 ))
11098, 108, 109sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }))
111 nnuz 12621 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
112 1zzd 12351 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℤ)
113 2fveq3 6779 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿𝑚)))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚𝑛 = 𝑚)
115113, 114oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿𝑚)) / 𝑚))
116115fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
117 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))) = (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))
118 fvex 6787 . . . . . . . . . . . . . . . . . . . . . . . 24 (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ V
119116, 117, 118fvmpt 6875 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
120119adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
121 nnre 11980 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
122121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
123122cjred 14937 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (∗‘𝑚) = 𝑚)
124123oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
12510adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑋:(Base‘𝑍)⟶ℂ)
1262, 4, 17znzrhfo 20755 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐿:ℤ–onto→(Base‘𝑍))
128 fof 6688 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
129127, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐿:ℤ⟶(Base‘𝑍))
130 nnz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
131 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
132129, 130, 131syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → (𝐿𝑚) ∈ (Base‘𝑍))
133125, 132ffvelrnd 6962 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
134 nncn 11981 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
135134adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
136 nnne0 12007 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
137136adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
138133, 135, 137cjdivd 14934 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)))
139 fvco3 6867 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋:(Base‘𝑍)⟶ℂ ∧ (𝐿𝑚) ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
140125, 132, 139syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
141140oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
142124, 138, 1413eqtr4d 2788 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
143120, 142eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
144133cjcld 14907 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘(𝑋‘(𝐿𝑚))) ∈ ℂ)
145144, 135, 137divcld 11751 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚) ∈ ℂ)
146141, 145eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
147 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
1482, 17, 18, 1, 3, 19, 9, 100, 147dchrmusumlema 26641 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
149 simprrl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
1507adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝑊)
15118adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
1529adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝐷)
153100adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋1 )
154 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
155 simprrr 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
1562, 17, 151, 1, 3, 19, 152, 153, 147, 154, 149, 155, 5dchrvmaeq0 26652 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑋𝑊𝑡 = 0))
157150, 156mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑡 = 0)
158149, 157breqtrd 5100 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
159158rexlimdvaa 3214 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
160159exlimdv 1936 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
161148, 160mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
162 seqex 13723 . . . . . . . . . . . . . . . . . . . . . . . 24 seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V)
164 2fveq3 6779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
165 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚𝑎 = 𝑚)
166164, 165oveq12d 7293 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
167 ovex 7308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
168166, 147, 167fvmpt 6875 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
169168adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
170133, 135, 137divcld 11751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
171169, 170eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) ∈ ℂ)
172111, 112, 171serf 13751 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))):ℕ⟶ℂ)
173172ffvelrnda 6961 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘) ∈ ℂ)
174 fzfid 13693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
175 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝜑)
176 elfznn 13285 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
177175, 176, 170syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
178174, 177fsumcj 15522 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
179175, 176, 169syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
180 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
181180, 111eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
182179, 181, 177fsumser 15442 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘))
183182fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
184175, 176, 120syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
185170cjcld 14907 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
186175, 176, 185syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
187184, 181, 186fsumser 15442 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘))
188178, 183, 1873eqtr3rd 2787 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
189111, 161, 163, 112, 173, 188climcj 15314 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ (∗‘0))
190 cj0 14869 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘0) = 0
191189, 190breqtrdi 5115 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ 0)
192111, 112, 143, 146, 191isumclim 15469 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0)
193 fveq1 6773 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (∗ ∘ 𝑋) → (𝑦‘(𝐿𝑚)) = ((∗ ∘ 𝑋)‘(𝐿𝑚)))
194193oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (∗ ∘ 𝑋) → ((𝑦‘(𝐿𝑚)) / 𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
195194sumeq2sdv 15416 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (∗ ∘ 𝑋) → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
196195eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (∗ ∘ 𝑋) → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
197196, 5elrab2 3627 . . . . . . . . . . . . . . . . . . . 20 ((∗ ∘ 𝑋) ∈ 𝑊 ↔ ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
198110, 192, 197sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∗ ∘ 𝑋) ∈ 𝑊)
199198ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ∈ 𝑊)
2007ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋𝑊)
201 simplr 766 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ≠ 𝑋)
20289, 199, 200, 201nehash2 14188 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ≤ (♯‘𝑊))
203 suble0 11489 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
20477, 79, 203sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
205202, 204mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ≤ 0)
20680, 75, 72, 88, 205lemul2ad 11915 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) ≤ ((log‘𝑥) · 0))
207 df-2 12036 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
208207oveq1i 7285 . . . . . . . . . . . . . . . . . 18 (2 − (♯‘𝑊)) = ((1 + 1) − (♯‘𝑊))
209 1cnd 10970 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
21079recnd 11003 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℂ)
211209, 209, 210addsubassd 11352 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((1 + 1) − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
212208, 211eqtrid 2790 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
213212oveq2d 7291 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))))
21471adantrr 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
21564ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℝ)
216215recnd 11003 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℂ)
217214, 209, 216adddid 10999 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))) = (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
218214mulid1d 10992 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 1) = (log‘𝑥))
219218oveq1d 7290 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
220213, 217, 2193eqtrd 2782 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
221214mul01d 11174 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 0) = 0)
222206, 220, 2213brtr3d 5105 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ 0)
22333nnred 11988 . . . . . . . . . . . . . . . 16 (𝜑 → (ϕ‘𝑁) ∈ ℝ)
224223ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℝ)
22549ad2ant2r 744 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
22634ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℕ0)
227226nn0ge0d 12296 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (ϕ‘𝑁))
22844, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → (Λ‘𝑛) ∈ ℝ)
229 vmage0 26270 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
23044, 229syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ (Λ‘𝑛))
23144nnred 11988 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℝ)
23244nngt0d 12022 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 < 𝑛)
233 divge0 11844 . . . . . . . . . . . . . . . . . 18 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
234228, 230, 231, 232, 233syl22anc 836 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
23540, 48, 234fsumge0 15507 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
236235ad2ant2r 744 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
237224, 225, 227, 236mulge0d 11552 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
23874, 75, 76, 222, 237letrd 11132 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
239 leaddsub 11451 . . . . . . . . . . . . . 14 (((log‘𝑥) ∈ ℝ ∧ ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ ∧ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24072, 73, 76, 239syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
241238, 240mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
24272, 88absidd 15134 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) = (log‘𝑥))
24367ad2ant2r 744 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
24475, 72, 243, 88, 241letrd 11132 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
245243, 244absidd 15134 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
246241, 242, 2453brtr4d 5106 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) ≤ (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24716, 32, 69, 71, 246o1le 15364 . . . . . . . . . 10 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
248247ex 413 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ≠ 𝑋 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
249248necon1bd 2961 . . . . . . . 8 (𝜑 → (¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1) → (∗ ∘ 𝑋) = 𝑋))
25015, 249mpi 20 . . . . . . 7 (𝜑 → (∗ ∘ 𝑋) = 𝑋)
251250adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗ ∘ 𝑋) = 𝑋)
252251fveq1d 6776 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (𝑋𝑥))
25314, 252eqtr3d 2780 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗‘(𝑋𝑥)) = (𝑋𝑥))
25412, 253cjrebd 14913 . . 3 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℝ)
255254ralrimiva 3103 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ)
256 ffnfv 6992 . 2 (𝑋:(Base‘𝑍)⟶ℝ ↔ (𝑋 Fn (Base‘𝑍) ∧ ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ))
25711, 255, 256sylanbrc 583 1 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592  ccom 5593   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  +crp 12730  [,)cico 13081  ...cfz 13239  cfl 13510  seqcseq 13721  chash 14044  ccj 14807  abscabs 14945  cli 15193  𝑂(1)co1 15195  Σcsu 15397  ϕcphi 16465  Basecbs 16912  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  Abelcabl 19387  1rcur 19737  Ringcrg 19783  CRingccrg 19784  Unitcui 19881  ℤRHomczrh 20701  ℤ/nczn 20704  logclog 25710  Λcvma 26241  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-rpss 7576  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-gim 18875  df-ga 18896  df-cntz 18923  df-oppg 18950  df-od 19136  df-gex 19137  df-pgp 19138  df-lsm 19241  df-pj1 19242  df-cmn 19388  df-abl 19389  df-cyg 19478  df-dprd 19598  df-dpj 19599  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-0p 24834  df-limc 25030  df-dv 25031  df-ply 25349  df-idp 25350  df-coe 25351  df-dgr 25352  df-quot 25451  df-ulm 25536  df-log 25712  df-cxp 25713  df-atan 26017  df-em 26142  df-cht 26246  df-vma 26247  df-chp 26248  df-ppi 26249  df-mu 26250  df-dchr 26381
This theorem is referenced by:  dchrisum0  26668
  Copyright terms: Public domain W3C validator