MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0re Structured version   Visualization version   GIF version

Theorem dchrisum0re 26566
Description: Suppose 𝑋 is a non-principal Dirichlet character with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Then 𝑋 is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0re (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0re
Dummy variables 𝑘 𝑛 𝑥 𝑓 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum2.g . . . 4 𝐺 = (DChr‘𝑁)
2 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 rpvmasum2.d . . . 4 𝐷 = (Base‘𝐺)
4 eqid 2738 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 rpvmasum2.w . . . . . . 7 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
65ssrab3 4011 . . . . . 6 𝑊 ⊆ (𝐷 ∖ { 1 })
7 dchrisum0.b . . . . . 6 (𝜑𝑋𝑊)
86, 7sselid 3915 . . . . 5 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
98eldifad 3895 . . . 4 (𝜑𝑋𝐷)
101, 2, 3, 4, 9dchrf 26295 . . 3 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
1110ffnd 6585 . 2 (𝜑𝑋 Fn (Base‘𝑍))
1210ffvelrnda 6943 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
13 fvco3 6849 . . . . . 6 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
1410, 13sylan 579 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
15 logno1 25696 . . . . . . . 8 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
16 1red 10907 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → 1 ∈ ℝ)
17 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
18 rpvmasum.a . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
19 rpvmasum2.1 . . . . . . . . . . . . 13 1 = (0g𝐺)
20 eqid 2738 . . . . . . . . . . . . 13 (Unit‘𝑍) = (Unit‘𝑍)
2118nnnn0d 12223 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
222zncrng 20664 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ CRing)
24 crngring 19710 . . . . . . . . . . . . . . 15 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ Ring)
26 eqid 2738 . . . . . . . . . . . . . . 15 (1r𝑍) = (1r𝑍)
2720, 261unit 19815 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring → (1r𝑍) ∈ (Unit‘𝑍))
2825, 27syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑍) ∈ (Unit‘𝑍))
29 eqid 2738 . . . . . . . . . . . . 13 (𝐿 “ {(1r𝑍)}) = (𝐿 “ {(1r𝑍)})
30 eqidd 2739 . . . . . . . . . . . . 13 ((𝜑𝑓𝑊) → (1r𝑍) = (1r𝑍))
312, 17, 18, 1, 3, 19, 5, 20, 28, 29, 30rpvmasum2 26565 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3231adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3318phicld 16401 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
3433nnnn0d 12223 . . . . . . . . . . . . . . . . 17 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
3534adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ0)
3635nn0red 12224 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℝ)
37 fzfid 13621 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
38 inss1 4159 . . . . . . . . . . . . . . . . 17 ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))
39 ssfi 8918 . . . . . . . . . . . . . . . . 17 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
4037, 38, 39sylancl 585 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
41 elinel1 4125 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) → 𝑛 ∈ (1...(⌊‘𝑥)))
42 elfznn 13214 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
4342adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4441, 43sylan2 592 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℕ)
45 vmacl 26172 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
46 nndivre 11944 . . . . . . . . . . . . . . . . . 18 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4745, 46mpancom 684 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4844, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4940, 48fsumrecl 15374 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
5036, 49remulcld 10936 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
51 relogcl 25636 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
53 1re 10906 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
541, 3dchrfi 26308 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
5518, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ Fin)
56 difss 4062 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∖ { 1 }) ⊆ 𝐷
576, 56sstri 3926 . . . . . . . . . . . . . . . . . . . 20 𝑊𝐷
58 ssfi 8918 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
5955, 57, 58sylancl 585 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑊 ∈ Fin)
60 hashcl 13999 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝑊) ∈ ℕ0)
6261nn0red 12224 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑊) ∈ ℝ)
63 resubcl 11215 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (1 − (♯‘𝑊)) ∈ ℝ)
6453, 62, 63sylancr 586 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − (♯‘𝑊)) ∈ ℝ)
6564adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (1 − (♯‘𝑊)) ∈ ℝ)
6652, 65remulcld 10936 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
6750, 66resubcld 11333 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
6867recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
6968adantlr 711 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
7051adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
7170recnd 10934 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
7251ad2antrl 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
7366ad2ant2r 743 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
7472, 73readdcld 10935 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
75 0red 10909 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ)
7650ad2ant2r 743 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
77 2re 11977 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
7962ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℝ)
8078, 79resubcld 11333 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ∈ ℝ)
81 log1 25646 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
82 simprr 769 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
83 1rp 12663 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
84 simprl 767 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
85 logleb 25663 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8683, 84, 85sylancr 586 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8782, 86mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
8881, 87eqbrtrrid 5106 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
8959ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑊 ∈ Fin)
90 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 (invg𝐺) = (invg𝐺)
911, 3, 9, 90dchrinv 26314 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) = (∗ ∘ 𝑋))
921dchrabl 26307 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9318, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ Abel)
94 ablgrp 19306 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ Grp)
963, 90grpinvcl 18542 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑋𝐷) → ((invg𝐺)‘𝑋) ∈ 𝐷)
9795, 9, 96syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ∈ 𝐷)
9891, 97eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
99 eldifsni 4720 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1008, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋1 )
1013, 19grpidcl 18522 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ Grp → 1𝐷)
10295, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑1𝐷)
1033, 90, 95, 9, 102grpinv11 18559 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (((invg𝐺)‘𝑋) = ((invg𝐺)‘ 1 ) ↔ 𝑋 = 1 ))
104103necon3bid 2987 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ) ↔ 𝑋1 ))
105100, 104mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ))
10619, 90grpinvid 18551 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 ∈ Grp → ((invg𝐺)‘ 1 ) = 1 )
10795, 106syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘ 1 ) = 1 )
108105, 91, 1073netr3d 3019 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ≠ 1 )
109 eldifsn 4717 . . . . . . . . . . . . . . . . . . . . 21 ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ↔ ((∗ ∘ 𝑋) ∈ 𝐷 ∧ (∗ ∘ 𝑋) ≠ 1 ))
11098, 108, 109sylanbrc 582 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }))
111 nnuz 12550 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
112 1zzd 12281 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℤ)
113 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿𝑚)))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚𝑛 = 𝑚)
115113, 114oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿𝑚)) / 𝑚))
116115fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
117 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))) = (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))
118 fvex 6769 . . . . . . . . . . . . . . . . . . . . . . . 24 (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ V
119116, 117, 118fvmpt 6857 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
120119adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
121 nnre 11910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
122121adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
123122cjred 14865 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (∗‘𝑚) = 𝑚)
124123oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
12510adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑋:(Base‘𝑍)⟶ℂ)
1262, 4, 17znzrhfo 20667 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐿:ℤ–onto→(Base‘𝑍))
128 fof 6672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
129127, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐿:ℤ⟶(Base‘𝑍))
130 nnz 12272 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
131 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
132129, 130, 131syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → (𝐿𝑚) ∈ (Base‘𝑍))
133125, 132ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
134 nncn 11911 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
136 nnne0 11937 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
137136adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
138133, 135, 137cjdivd 14862 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)))
139 fvco3 6849 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋:(Base‘𝑍)⟶ℂ ∧ (𝐿𝑚) ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
140125, 132, 139syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
141140oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
142124, 138, 1413eqtr4d 2788 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
143120, 142eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
144133cjcld 14835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘(𝑋‘(𝐿𝑚))) ∈ ℂ)
145144, 135, 137divcld 11681 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚) ∈ ℂ)
146141, 145eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
147 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
1482, 17, 18, 1, 3, 19, 9, 100, 147dchrmusumlema 26546 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
149 simprrl 777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
1507adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝑊)
15118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
1529adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝐷)
153100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋1 )
154 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
155 simprrr 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
1562, 17, 151, 1, 3, 19, 152, 153, 147, 154, 149, 155, 5dchrvmaeq0 26557 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑋𝑊𝑡 = 0))
157150, 156mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑡 = 0)
158149, 157breqtrd 5096 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
159158rexlimdvaa 3213 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
160159exlimdv 1937 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
161148, 160mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
162 seqex 13651 . . . . . . . . . . . . . . . . . . . . . . . 24 seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V)
164 2fveq3 6761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
165 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚𝑎 = 𝑚)
166164, 165oveq12d 7273 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
167 ovex 7288 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
168166, 147, 167fvmpt 6857 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
169168adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
170133, 135, 137divcld 11681 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
171169, 170eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) ∈ ℂ)
172111, 112, 171serf 13679 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))):ℕ⟶ℂ)
173172ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘) ∈ ℂ)
174 fzfid 13621 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
175 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝜑)
176 elfznn 13214 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
177175, 176, 170syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
178174, 177fsumcj 15450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
179175, 176, 169syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
180 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
181180, 111eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
182179, 181, 177fsumser 15370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘))
183182fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
184175, 176, 120syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
185170cjcld 14835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
186175, 176, 185syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
187184, 181, 186fsumser 15370 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘))
188178, 183, 1873eqtr3rd 2787 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
189111, 161, 163, 112, 173, 188climcj 15242 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ (∗‘0))
190 cj0 14797 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘0) = 0
191189, 190breqtrdi 5111 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ 0)
192111, 112, 143, 146, 191isumclim 15397 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0)
193 fveq1 6755 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (∗ ∘ 𝑋) → (𝑦‘(𝐿𝑚)) = ((∗ ∘ 𝑋)‘(𝐿𝑚)))
194193oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (∗ ∘ 𝑋) → ((𝑦‘(𝐿𝑚)) / 𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
195194sumeq2sdv 15344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (∗ ∘ 𝑋) → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
196195eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (∗ ∘ 𝑋) → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
197196, 5elrab2 3620 . . . . . . . . . . . . . . . . . . . 20 ((∗ ∘ 𝑋) ∈ 𝑊 ↔ ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
198110, 192, 197sylanbrc 582 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∗ ∘ 𝑋) ∈ 𝑊)
199198ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ∈ 𝑊)
2007ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋𝑊)
201 simplr 765 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ≠ 𝑋)
20289, 199, 200, 201nehash2 14116 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ≤ (♯‘𝑊))
203 suble0 11419 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
20477, 79, 203sylancr 586 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
205202, 204mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ≤ 0)
20680, 75, 72, 88, 205lemul2ad 11845 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) ≤ ((log‘𝑥) · 0))
207 df-2 11966 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
208207oveq1i 7265 . . . . . . . . . . . . . . . . . 18 (2 − (♯‘𝑊)) = ((1 + 1) − (♯‘𝑊))
209 1cnd 10901 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
21079recnd 10934 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℂ)
211209, 209, 210addsubassd 11282 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((1 + 1) − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
212208, 211syl5eq 2791 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
213212oveq2d 7271 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))))
21471adantrr 713 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
21564ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℝ)
216215recnd 10934 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℂ)
217214, 209, 216adddid 10930 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))) = (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
218214mulid1d 10923 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 1) = (log‘𝑥))
219218oveq1d 7270 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
220213, 217, 2193eqtrd 2782 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
221214mul01d 11104 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 0) = 0)
222206, 220, 2213brtr3d 5101 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ 0)
22333nnred 11918 . . . . . . . . . . . . . . . 16 (𝜑 → (ϕ‘𝑁) ∈ ℝ)
224223ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℝ)
22549ad2ant2r 743 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
22634ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℕ0)
227226nn0ge0d 12226 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (ϕ‘𝑁))
22844, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → (Λ‘𝑛) ∈ ℝ)
229 vmage0 26175 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
23044, 229syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ (Λ‘𝑛))
23144nnred 11918 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℝ)
23244nngt0d 11952 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 < 𝑛)
233 divge0 11774 . . . . . . . . . . . . . . . . . 18 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
234228, 230, 231, 232, 233syl22anc 835 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
23540, 48, 234fsumge0 15435 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
236235ad2ant2r 743 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
237224, 225, 227, 236mulge0d 11482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
23874, 75, 76, 222, 237letrd 11062 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
239 leaddsub 11381 . . . . . . . . . . . . . 14 (((log‘𝑥) ∈ ℝ ∧ ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ ∧ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24072, 73, 76, 239syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
241238, 240mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
24272, 88absidd 15062 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) = (log‘𝑥))
24367ad2ant2r 743 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
24475, 72, 243, 88, 241letrd 11062 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
245243, 244absidd 15062 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
246241, 242, 2453brtr4d 5102 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) ≤ (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24716, 32, 69, 71, 246o1le 15292 . . . . . . . . . 10 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
248247ex 412 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ≠ 𝑋 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
249248necon1bd 2960 . . . . . . . 8 (𝜑 → (¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1) → (∗ ∘ 𝑋) = 𝑋))
25015, 249mpi 20 . . . . . . 7 (𝜑 → (∗ ∘ 𝑋) = 𝑋)
251250adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗ ∘ 𝑋) = 𝑋)
252251fveq1d 6758 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (𝑋𝑥))
25314, 252eqtr3d 2780 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗‘(𝑋𝑥)) = (𝑋𝑥))
25412, 253cjrebd 14841 . . 3 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℝ)
255254ralrimiva 3107 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ)
256 ffnfv 6974 . 2 (𝑋:(Base‘𝑍)⟶ℝ ↔ (𝑋 Fn (Base‘𝑍) ∧ ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ))
25711, 255, 256sylanbrc 582 1 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  {csn 4558   class class class wbr 5070  cmpt 5153  ccnv 5579  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  [,)cico 13010  ...cfz 13168  cfl 13438  seqcseq 13649  chash 13972  ccj 14735  abscabs 14873  cli 15121  𝑂(1)co1 15123  Σcsu 15325  ϕcphi 16393  Basecbs 16840  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  Abelcabl 19302  1rcur 19652  Ringcrg 19698  CRingccrg 19699  Unitcui 19796  ℤRHomczrh 20613  ℤ/nczn 20616  logclog 25615  Λcvma 26146  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-rpss 7554  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-qus 17137  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-gim 18790  df-ga 18811  df-cntz 18838  df-oppg 18865  df-od 19051  df-gex 19052  df-pgp 19053  df-lsm 19156  df-pj1 19157  df-cmn 19303  df-abl 19304  df-cyg 19393  df-dprd 19513  df-dpj 19514  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-0p 24739  df-limc 24935  df-dv 24936  df-ply 25254  df-idp 25255  df-coe 25256  df-dgr 25257  df-quot 25356  df-ulm 25441  df-log 25617  df-cxp 25618  df-atan 25922  df-em 26047  df-cht 26151  df-vma 26152  df-chp 26153  df-ppi 26154  df-mu 26155  df-dchr 26286
This theorem is referenced by:  dchrisum0  26573
  Copyright terms: Public domain W3C validator