MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0re Structured version   Visualization version   GIF version

Theorem dchrisum0re 26861
Description: Suppose 𝑋 is a non-principal Dirichlet character with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Then 𝑋 is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0re (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0re
Dummy variables 𝑘 𝑛 𝑥 𝑓 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum2.g . . . 4 𝐺 = (DChr‘𝑁)
2 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 rpvmasum2.d . . . 4 𝐷 = (Base‘𝐺)
4 eqid 2736 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 rpvmasum2.w . . . . . . 7 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
65ssrab3 4040 . . . . . 6 𝑊 ⊆ (𝐷 ∖ { 1 })
7 dchrisum0.b . . . . . 6 (𝜑𝑋𝑊)
86, 7sselid 3942 . . . . 5 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
98eldifad 3922 . . . 4 (𝜑𝑋𝐷)
101, 2, 3, 4, 9dchrf 26590 . . 3 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
1110ffnd 6669 . 2 (𝜑𝑋 Fn (Base‘𝑍))
1210ffvelcdmda 7035 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
13 fvco3 6940 . . . . . 6 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
1410, 13sylan 580 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
15 logno1 25991 . . . . . . . 8 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
16 1red 11156 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → 1 ∈ ℝ)
17 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
18 rpvmasum.a . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
19 rpvmasum2.1 . . . . . . . . . . . . 13 1 = (0g𝐺)
20 eqid 2736 . . . . . . . . . . . . 13 (Unit‘𝑍) = (Unit‘𝑍)
2118nnnn0d 12473 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
222zncrng 20951 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ CRing)
24 crngring 19976 . . . . . . . . . . . . . . 15 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ Ring)
26 eqid 2736 . . . . . . . . . . . . . . 15 (1r𝑍) = (1r𝑍)
2720, 261unit 20087 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring → (1r𝑍) ∈ (Unit‘𝑍))
2825, 27syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑍) ∈ (Unit‘𝑍))
29 eqid 2736 . . . . . . . . . . . . 13 (𝐿 “ {(1r𝑍)}) = (𝐿 “ {(1r𝑍)})
30 eqidd 2737 . . . . . . . . . . . . 13 ((𝜑𝑓𝑊) → (1r𝑍) = (1r𝑍))
312, 17, 18, 1, 3, 19, 5, 20, 28, 29, 30rpvmasum2 26860 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3231adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3318phicld 16644 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
3433nnnn0d 12473 . . . . . . . . . . . . . . . . 17 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
3534adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ0)
3635nn0red 12474 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℝ)
37 fzfid 13878 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
38 inss1 4188 . . . . . . . . . . . . . . . . 17 ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))
39 ssfi 9117 . . . . . . . . . . . . . . . . 17 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
4037, 38, 39sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
41 elinel1 4155 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) → 𝑛 ∈ (1...(⌊‘𝑥)))
42 elfznn 13470 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
4342adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4441, 43sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℕ)
45 vmacl 26467 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
46 nndivre 12194 . . . . . . . . . . . . . . . . . 18 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4745, 46mpancom 686 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4844, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4940, 48fsumrecl 15619 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
5036, 49remulcld 11185 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
51 relogcl 25931 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
5251adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
53 1re 11155 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
541, 3dchrfi 26603 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
5518, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ Fin)
56 difss 4091 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∖ { 1 }) ⊆ 𝐷
576, 56sstri 3953 . . . . . . . . . . . . . . . . . . . 20 𝑊𝐷
58 ssfi 9117 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
5955, 57, 58sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑊 ∈ Fin)
60 hashcl 14256 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝑊) ∈ ℕ0)
6261nn0red 12474 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑊) ∈ ℝ)
63 resubcl 11465 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (1 − (♯‘𝑊)) ∈ ℝ)
6453, 62, 63sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − (♯‘𝑊)) ∈ ℝ)
6564adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (1 − (♯‘𝑊)) ∈ ℝ)
6652, 65remulcld 11185 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
6750, 66resubcld 11583 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
6867recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
6968adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
7051adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
7170recnd 11183 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
7251ad2antrl 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
7366ad2ant2r 745 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
7472, 73readdcld 11184 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
75 0red 11158 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ)
7650ad2ant2r 745 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
77 2re 12227 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
7962ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℝ)
8078, 79resubcld 11583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ∈ ℝ)
81 log1 25941 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
82 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
83 1rp 12919 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
84 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
85 logleb 25958 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8683, 84, 85sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8782, 86mpbid 231 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
8881, 87eqbrtrrid 5141 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
8959ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑊 ∈ Fin)
90 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (invg𝐺) = (invg𝐺)
911, 3, 9, 90dchrinv 26609 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) = (∗ ∘ 𝑋))
921dchrabl 26602 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9318, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ Abel)
94 ablgrp 19567 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ Grp)
963, 90grpinvcl 18798 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑋𝐷) → ((invg𝐺)‘𝑋) ∈ 𝐷)
9795, 9, 96syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ∈ 𝐷)
9891, 97eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
99 eldifsni 4750 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1008, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋1 )
1013, 19grpidcl 18778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ Grp → 1𝐷)
10295, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑1𝐷)
1033, 90, 95, 9, 102grpinv11 18816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (((invg𝐺)‘𝑋) = ((invg𝐺)‘ 1 ) ↔ 𝑋 = 1 ))
104103necon3bid 2988 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ) ↔ 𝑋1 ))
105100, 104mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ))
10619, 90grpinvid 18808 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 ∈ Grp → ((invg𝐺)‘ 1 ) = 1 )
10795, 106syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘ 1 ) = 1 )
108105, 91, 1073netr3d 3020 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ≠ 1 )
109 eldifsn 4747 . . . . . . . . . . . . . . . . . . . . 21 ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ↔ ((∗ ∘ 𝑋) ∈ 𝐷 ∧ (∗ ∘ 𝑋) ≠ 1 ))
11098, 108, 109sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }))
111 nnuz 12806 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
112 1zzd 12534 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℤ)
113 2fveq3 6847 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿𝑚)))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚𝑛 = 𝑚)
115113, 114oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿𝑚)) / 𝑚))
116115fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
117 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))) = (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))
118 fvex 6855 . . . . . . . . . . . . . . . . . . . . . . . 24 (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ V
119116, 117, 118fvmpt 6948 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
120119adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
121 nnre 12160 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
122121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
123122cjred 15111 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (∗‘𝑚) = 𝑚)
124123oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
12510adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑋:(Base‘𝑍)⟶ℂ)
1262, 4, 17znzrhfo 20954 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐿:ℤ–onto→(Base‘𝑍))
128 fof 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
129127, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐿:ℤ⟶(Base‘𝑍))
130 nnz 12520 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
131 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
132129, 130, 131syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → (𝐿𝑚) ∈ (Base‘𝑍))
133125, 132ffvelcdmd 7036 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
134 nncn 12161 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
135134adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
136 nnne0 12187 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
137136adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
138133, 135, 137cjdivd 15108 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)))
139 fvco3 6940 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋:(Base‘𝑍)⟶ℂ ∧ (𝐿𝑚) ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
140125, 132, 139syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
141140oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
142124, 138, 1413eqtr4d 2786 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
143120, 142eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
144133cjcld 15081 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘(𝑋‘(𝐿𝑚))) ∈ ℂ)
145144, 135, 137divcld 11931 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚) ∈ ℂ)
146141, 145eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
147 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
1482, 17, 18, 1, 3, 19, 9, 100, 147dchrmusumlema 26841 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
149 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
1507adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝑊)
15118adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
1529adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝐷)
153100adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋1 )
154 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
155 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
1562, 17, 151, 1, 3, 19, 152, 153, 147, 154, 149, 155, 5dchrvmaeq0 26852 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑋𝑊𝑡 = 0))
157150, 156mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑡 = 0)
158149, 157breqtrd 5131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
159158rexlimdvaa 3153 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
160159exlimdv 1936 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
161148, 160mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
162 seqex 13908 . . . . . . . . . . . . . . . . . . . . . . . 24 seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V)
164 2fveq3 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
165 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚𝑎 = 𝑚)
166164, 165oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
167 ovex 7390 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
168166, 147, 167fvmpt 6948 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
169168adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
170133, 135, 137divcld 11931 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
171169, 170eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) ∈ ℂ)
172111, 112, 171serf 13936 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))):ℕ⟶ℂ)
173172ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘) ∈ ℂ)
174 fzfid 13878 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
175 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝜑)
176 elfznn 13470 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
177175, 176, 170syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
178174, 177fsumcj 15695 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
179175, 176, 169syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
180 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
181180, 111eleqtrdi 2848 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
182179, 181, 177fsumser 15615 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘))
183182fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
184175, 176, 120syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
185170cjcld 15081 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
186175, 176, 185syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
187184, 181, 186fsumser 15615 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘))
188178, 183, 1873eqtr3rd 2785 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
189111, 161, 163, 112, 173, 188climcj 15487 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ (∗‘0))
190 cj0 15043 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘0) = 0
191189, 190breqtrdi 5146 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ 0)
192111, 112, 143, 146, 191isumclim 15642 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0)
193 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (∗ ∘ 𝑋) → (𝑦‘(𝐿𝑚)) = ((∗ ∘ 𝑋)‘(𝐿𝑚)))
194193oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (∗ ∘ 𝑋) → ((𝑦‘(𝐿𝑚)) / 𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
195194sumeq2sdv 15589 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (∗ ∘ 𝑋) → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
196195eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (∗ ∘ 𝑋) → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
197196, 5elrab2 3648 . . . . . . . . . . . . . . . . . . . 20 ((∗ ∘ 𝑋) ∈ 𝑊 ↔ ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
198110, 192, 197sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∗ ∘ 𝑋) ∈ 𝑊)
199198ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ∈ 𝑊)
2007ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋𝑊)
201 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ≠ 𝑋)
20289, 199, 200, 201nehash2 14373 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ≤ (♯‘𝑊))
203 suble0 11669 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
20477, 79, 203sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
205202, 204mpbird 256 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ≤ 0)
20680, 75, 72, 88, 205lemul2ad 12095 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) ≤ ((log‘𝑥) · 0))
207 df-2 12216 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
208207oveq1i 7367 . . . . . . . . . . . . . . . . . 18 (2 − (♯‘𝑊)) = ((1 + 1) − (♯‘𝑊))
209 1cnd 11150 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
21079recnd 11183 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℂ)
211209, 209, 210addsubassd 11532 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((1 + 1) − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
212208, 211eqtrid 2788 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
213212oveq2d 7373 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))))
21471adantrr 715 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
21564ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℝ)
216215recnd 11183 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℂ)
217214, 209, 216adddid 11179 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))) = (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
218214mulid1d 11172 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 1) = (log‘𝑥))
219218oveq1d 7372 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
220213, 217, 2193eqtrd 2780 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
221214mul01d 11354 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 0) = 0)
222206, 220, 2213brtr3d 5136 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ 0)
22333nnred 12168 . . . . . . . . . . . . . . . 16 (𝜑 → (ϕ‘𝑁) ∈ ℝ)
224223ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℝ)
22549ad2ant2r 745 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
22634ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℕ0)
227226nn0ge0d 12476 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (ϕ‘𝑁))
22844, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → (Λ‘𝑛) ∈ ℝ)
229 vmage0 26470 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
23044, 229syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ (Λ‘𝑛))
23144nnred 12168 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℝ)
23244nngt0d 12202 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 < 𝑛)
233 divge0 12024 . . . . . . . . . . . . . . . . . 18 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
234228, 230, 231, 232, 233syl22anc 837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
23540, 48, 234fsumge0 15680 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
236235ad2ant2r 745 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
237224, 225, 227, 236mulge0d 11732 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
23874, 75, 76, 222, 237letrd 11312 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
239 leaddsub 11631 . . . . . . . . . . . . . 14 (((log‘𝑥) ∈ ℝ ∧ ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ ∧ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24072, 73, 76, 239syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
241238, 240mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
24272, 88absidd 15307 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) = (log‘𝑥))
24367ad2ant2r 745 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
24475, 72, 243, 88, 241letrd 11312 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
245243, 244absidd 15307 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
246241, 242, 2453brtr4d 5137 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) ≤ (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24716, 32, 69, 71, 246o1le 15537 . . . . . . . . . 10 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
248247ex 413 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ≠ 𝑋 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
249248necon1bd 2961 . . . . . . . 8 (𝜑 → (¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1) → (∗ ∘ 𝑋) = 𝑋))
25015, 249mpi 20 . . . . . . 7 (𝜑 → (∗ ∘ 𝑋) = 𝑋)
251250adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗ ∘ 𝑋) = 𝑋)
252251fveq1d 6844 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (𝑋𝑥))
25314, 252eqtr3d 2778 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗‘(𝑋𝑥)) = (𝑋𝑥))
25412, 253cjrebd 15087 . . 3 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℝ)
255254ralrimiva 3143 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ)
256 ffnfv 7066 . 2 (𝑋:(Base‘𝑍)⟶ℝ ↔ (𝑋 Fn (Base‘𝑍) ∧ ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ))
25711, 255, 256sylanbrc 583 1 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  cin 3909  wss 3910  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636  ccom 5637   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  (class class class)co 7357  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  [,)cico 13266  ...cfz 13424  cfl 13695  seqcseq 13906  chash 14230  ccj 14981  abscabs 15119  cli 15366  𝑂(1)co1 15368  Σcsu 15570  ϕcphi 16636  Basecbs 17083  0gc0g 17321  Grpcgrp 18748  invgcminusg 18749  Abelcabl 19563  1rcur 19913  Ringcrg 19964  CRingccrg 19965  Unitcui 20068  ℤRHomczrh 20900  ℤ/nczn 20903  logclog 25910  Λcvma 26441  DChrcdchr 26580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-ec 8650  df-qs 8654  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-o1 15372  df-lo1 15373  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-phi 16638  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-qus 17391  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-nsg 18926  df-eqg 18927  df-ghm 19006  df-gim 19049  df-ga 19070  df-cntz 19097  df-oppg 19124  df-od 19310  df-gex 19311  df-pgp 19312  df-lsm 19418  df-pj1 19419  df-cmn 19564  df-abl 19565  df-cyg 19655  df-dprd 19774  df-dpj 19775  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-sra 20633  df-rgmod 20634  df-lidl 20635  df-rsp 20636  df-2idl 20702  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zn 20907  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-0p 25034  df-limc 25230  df-dv 25231  df-ply 25549  df-idp 25550  df-coe 25551  df-dgr 25552  df-quot 25651  df-ulm 25736  df-log 25912  df-cxp 25913  df-atan 26217  df-em 26342  df-cht 26446  df-vma 26447  df-chp 26448  df-ppi 26449  df-mu 26450  df-dchr 26581
This theorem is referenced by:  dchrisum0  26868
  Copyright terms: Public domain W3C validator