MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0re Structured version   Visualization version   GIF version

Theorem dchrisum0re 27444
Description: Suppose 𝑋 is a non-principal Dirichlet character with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Then 𝑋 is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0re (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0re
Dummy variables 𝑘 𝑛 𝑥 𝑓 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum2.g . . . 4 𝐺 = (DChr‘𝑁)
2 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 rpvmasum2.d . . . 4 𝐷 = (Base‘𝐺)
4 eqid 2730 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 rpvmasum2.w . . . . . . 7 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
65ssrab3 4030 . . . . . 6 𝑊 ⊆ (𝐷 ∖ { 1 })
7 dchrisum0.b . . . . . 6 (𝜑𝑋𝑊)
86, 7sselid 3930 . . . . 5 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
98eldifad 3912 . . . 4 (𝜑𝑋𝐷)
101, 2, 3, 4, 9dchrf 27173 . . 3 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
1110ffnd 6648 . 2 (𝜑𝑋 Fn (Base‘𝑍))
1210ffvelcdmda 7012 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
13 fvco3 6916 . . . . . 6 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
1410, 13sylan 580 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
15 logno1 26565 . . . . . . . 8 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
16 1red 11105 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → 1 ∈ ℝ)
17 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
18 rpvmasum.a . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
19 rpvmasum2.1 . . . . . . . . . . . . 13 1 = (0g𝐺)
20 eqid 2730 . . . . . . . . . . . . 13 (Unit‘𝑍) = (Unit‘𝑍)
2118nnnn0d 12434 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
222zncrng 21474 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ CRing)
24 crngring 20156 . . . . . . . . . . . . . . 15 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ Ring)
26 eqid 2730 . . . . . . . . . . . . . . 15 (1r𝑍) = (1r𝑍)
2720, 261unit 20285 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring → (1r𝑍) ∈ (Unit‘𝑍))
2825, 27syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑍) ∈ (Unit‘𝑍))
29 eqid 2730 . . . . . . . . . . . . 13 (𝐿 “ {(1r𝑍)}) = (𝐿 “ {(1r𝑍)})
30 eqidd 2731 . . . . . . . . . . . . 13 ((𝜑𝑓𝑊) → (1r𝑍) = (1r𝑍))
312, 17, 18, 1, 3, 19, 5, 20, 28, 29, 30rpvmasum2 27443 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3231adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3318phicld 16675 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
3433nnnn0d 12434 . . . . . . . . . . . . . . . . 17 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
3534adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ0)
3635nn0red 12435 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℝ)
37 fzfid 13872 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
38 inss1 4185 . . . . . . . . . . . . . . . . 17 ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))
39 ssfi 9077 . . . . . . . . . . . . . . . . 17 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
4037, 38, 39sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
41 elinel1 4149 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) → 𝑛 ∈ (1...(⌊‘𝑥)))
42 elfznn 13445 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
4342adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4441, 43sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℕ)
45 vmacl 27048 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
46 nndivre 12158 . . . . . . . . . . . . . . . . . 18 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4745, 46mpancom 688 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4844, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4940, 48fsumrecl 15633 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
5036, 49remulcld 11134 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
51 relogcl 26504 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
53 1re 11104 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
541, 3dchrfi 27186 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
5518, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ Fin)
56 difss 4084 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∖ { 1 }) ⊆ 𝐷
576, 56sstri 3942 . . . . . . . . . . . . . . . . . . . 20 𝑊𝐷
58 ssfi 9077 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
5955, 57, 58sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑊 ∈ Fin)
60 hashcl 14255 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝑊) ∈ ℕ0)
6261nn0red 12435 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑊) ∈ ℝ)
63 resubcl 11417 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (1 − (♯‘𝑊)) ∈ ℝ)
6453, 62, 63sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − (♯‘𝑊)) ∈ ℝ)
6564adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (1 − (♯‘𝑊)) ∈ ℝ)
6652, 65remulcld 11134 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
6750, 66resubcld 11537 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
6867recnd 11132 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
6968adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
7051adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
7170recnd 11132 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
7251ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
7366ad2ant2r 747 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
7472, 73readdcld 11133 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
75 0red 11107 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ)
7650ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
77 2re 12191 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
7962ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℝ)
8078, 79resubcld 11537 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ∈ ℝ)
81 log1 26514 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
82 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
83 1rp 12886 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
84 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
85 logleb 26532 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8683, 84, 85sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8782, 86mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
8881, 87eqbrtrrid 5125 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
8959ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑊 ∈ Fin)
90 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (invg𝐺) = (invg𝐺)
911, 3, 9, 90dchrinv 27192 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) = (∗ ∘ 𝑋))
921dchrabl 27185 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9318, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ Abel)
94 ablgrp 19690 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ Grp)
963, 90grpinvcl 18892 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑋𝐷) → ((invg𝐺)‘𝑋) ∈ 𝐷)
9795, 9, 96syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ∈ 𝐷)
9891, 97eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
99 eldifsni 4740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1008, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋1 )
1013, 19grpidcl 18870 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ Grp → 1𝐷)
10295, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑1𝐷)
1033, 90, 95, 9, 102grpinv11 18912 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (((invg𝐺)‘𝑋) = ((invg𝐺)‘ 1 ) ↔ 𝑋 = 1 ))
104103necon3bid 2970 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ) ↔ 𝑋1 ))
105100, 104mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ))
10619, 90grpinvid 18904 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 ∈ Grp → ((invg𝐺)‘ 1 ) = 1 )
10795, 106syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘ 1 ) = 1 )
108105, 91, 1073netr3d 3002 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ≠ 1 )
109 eldifsn 4736 . . . . . . . . . . . . . . . . . . . . 21 ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ↔ ((∗ ∘ 𝑋) ∈ 𝐷 ∧ (∗ ∘ 𝑋) ≠ 1 ))
11098, 108, 109sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }))
111 nnuz 12767 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
112 1zzd 12495 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℤ)
113 2fveq3 6822 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿𝑚)))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚𝑛 = 𝑚)
115113, 114oveq12d 7359 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿𝑚)) / 𝑚))
116115fveq2d 6821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
117 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))) = (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))
118 fvex 6830 . . . . . . . . . . . . . . . . . . . . . . . 24 (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ V
119116, 117, 118fvmpt 6924 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
120119adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
121 nnre 12124 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
122121adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
123122cjred 15125 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (∗‘𝑚) = 𝑚)
124123oveq2d 7357 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
12510adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑋:(Base‘𝑍)⟶ℂ)
1262, 4, 17znzrhfo 21477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐿:ℤ–onto→(Base‘𝑍))
128 fof 6731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
129127, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐿:ℤ⟶(Base‘𝑍))
130 nnz 12481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
131 ffvelcdm 7009 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
132129, 130, 131syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → (𝐿𝑚) ∈ (Base‘𝑍))
133125, 132ffvelcdmd 7013 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
134 nncn 12125 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
136 nnne0 12151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
137136adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
138133, 135, 137cjdivd 15122 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)))
139 fvco3 6916 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋:(Base‘𝑍)⟶ℂ ∧ (𝐿𝑚) ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
140125, 132, 139syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
141140oveq1d 7356 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
142124, 138, 1413eqtr4d 2775 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
143120, 142eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
144133cjcld 15095 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘(𝑋‘(𝐿𝑚))) ∈ ℂ)
145144, 135, 137divcld 11889 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚) ∈ ℂ)
146141, 145eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
147 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
1482, 17, 18, 1, 3, 19, 9, 100, 147dchrmusumlema 27424 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
149 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
1507adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝑊)
15118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
1529adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝐷)
153100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋1 )
154 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
155 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
1562, 17, 151, 1, 3, 19, 152, 153, 147, 154, 149, 155, 5dchrvmaeq0 27435 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑋𝑊𝑡 = 0))
157150, 156mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑡 = 0)
158149, 157breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
159158rexlimdvaa 3132 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
160159exlimdv 1934 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
161148, 160mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
162 seqex 13902 . . . . . . . . . . . . . . . . . . . . . . . 24 seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V)
164 2fveq3 6822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
165 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚𝑎 = 𝑚)
166164, 165oveq12d 7359 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
167 ovex 7374 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
168166, 147, 167fvmpt 6924 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
169168adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
170133, 135, 137divcld 11889 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
171169, 170eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) ∈ ℂ)
172111, 112, 171serf 13929 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))):ℕ⟶ℂ)
173172ffvelcdmda 7012 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘) ∈ ℂ)
174 fzfid 13872 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
175 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝜑)
176 elfznn 13445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
177175, 176, 170syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
178174, 177fsumcj 15709 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
179175, 176, 169syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
180 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
181180, 111eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
182179, 181, 177fsumser 15629 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘))
183182fveq2d 6821 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
184175, 176, 120syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
185170cjcld 15095 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
186175, 176, 185syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
187184, 181, 186fsumser 15629 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘))
188178, 183, 1873eqtr3rd 2774 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
189111, 161, 163, 112, 173, 188climcj 15504 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ (∗‘0))
190 cj0 15057 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘0) = 0
191189, 190breqtrdi 5130 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ 0)
192111, 112, 143, 146, 191isumclim 15656 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0)
193 fveq1 6816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (∗ ∘ 𝑋) → (𝑦‘(𝐿𝑚)) = ((∗ ∘ 𝑋)‘(𝐿𝑚)))
194193oveq1d 7356 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (∗ ∘ 𝑋) → ((𝑦‘(𝐿𝑚)) / 𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
195194sumeq2sdv 15602 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (∗ ∘ 𝑋) → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
196195eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (∗ ∘ 𝑋) → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
197196, 5elrab2 3648 . . . . . . . . . . . . . . . . . . . 20 ((∗ ∘ 𝑋) ∈ 𝑊 ↔ ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
198110, 192, 197sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∗ ∘ 𝑋) ∈ 𝑊)
199198ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ∈ 𝑊)
2007ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋𝑊)
201 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ≠ 𝑋)
20289, 199, 200, 201nehash2 14373 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ≤ (♯‘𝑊))
203 suble0 11623 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
20477, 79, 203sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
205202, 204mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ≤ 0)
20680, 75, 72, 88, 205lemul2ad 12054 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) ≤ ((log‘𝑥) · 0))
207 df-2 12180 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
208207oveq1i 7351 . . . . . . . . . . . . . . . . . 18 (2 − (♯‘𝑊)) = ((1 + 1) − (♯‘𝑊))
209 1cnd 11099 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
21079recnd 11132 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℂ)
211209, 209, 210addsubassd 11484 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((1 + 1) − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
212208, 211eqtrid 2777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
213212oveq2d 7357 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))))
21471adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
21564ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℝ)
216215recnd 11132 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℂ)
217214, 209, 216adddid 11128 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))) = (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
218214mulridd 11121 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 1) = (log‘𝑥))
219218oveq1d 7356 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
220213, 217, 2193eqtrd 2769 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
221214mul01d 11304 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 0) = 0)
222206, 220, 2213brtr3d 5120 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ 0)
22333nnred 12132 . . . . . . . . . . . . . . . 16 (𝜑 → (ϕ‘𝑁) ∈ ℝ)
224223ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℝ)
22549ad2ant2r 747 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
22634ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℕ0)
227226nn0ge0d 12437 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (ϕ‘𝑁))
22844, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → (Λ‘𝑛) ∈ ℝ)
229 vmage0 27051 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
23044, 229syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ (Λ‘𝑛))
23144nnred 12132 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℝ)
23244nngt0d 12166 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 < 𝑛)
233 divge0 11983 . . . . . . . . . . . . . . . . . 18 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
234228, 230, 231, 232, 233syl22anc 838 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
23540, 48, 234fsumge0 15694 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
236235ad2ant2r 747 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
237224, 225, 227, 236mulge0d 11686 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
23874, 75, 76, 222, 237letrd 11262 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
239 leaddsub 11585 . . . . . . . . . . . . . 14 (((log‘𝑥) ∈ ℝ ∧ ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ ∧ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24072, 73, 76, 239syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
241238, 240mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
24272, 88absidd 15322 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) = (log‘𝑥))
24367ad2ant2r 747 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
24475, 72, 243, 88, 241letrd 11262 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
245243, 244absidd 15322 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
246241, 242, 2453brtr4d 5121 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) ≤ (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24716, 32, 69, 71, 246o1le 15552 . . . . . . . . . 10 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
248247ex 412 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ≠ 𝑋 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
249248necon1bd 2944 . . . . . . . 8 (𝜑 → (¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1) → (∗ ∘ 𝑋) = 𝑋))
25015, 249mpi 20 . . . . . . 7 (𝜑 → (∗ ∘ 𝑋) = 𝑋)
251250adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗ ∘ 𝑋) = 𝑋)
252251fveq1d 6819 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (𝑋𝑥))
25314, 252eqtr3d 2767 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗‘(𝑋𝑥)) = (𝑋𝑥))
25412, 253cjrebd 15101 . . 3 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℝ)
255254ralrimiva 3122 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ)
256 ffnfv 7047 . 2 (𝑋:(Base‘𝑍)⟶ℝ ↔ (𝑋 Fn (Base‘𝑍) ∧ ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ))
25711, 255, 256sylanbrc 583 1 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  cdif 3897  cin 3899  wss 3900  {csn 4574   class class class wbr 5089  cmpt 5170  ccnv 5613  cima 5617  ccom 5618   Fn wfn 6472  wf 6473  ontowfo 6475  cfv 6477  (class class class)co 7341  Fincfn 8864  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  +∞cpnf 11135   < clt 11138  cle 11139  cmin 11336   / cdiv 11766  cn 12117  2c2 12172  0cn0 12373  cz 12460  cuz 12724  +crp 12882  [,)cico 13239  ...cfz 13399  cfl 13686  seqcseq 13900  chash 14229  ccj 14995  abscabs 15133  cli 15383  𝑂(1)co1 15385  Σcsu 15585  ϕcphi 16667  Basecbs 17112  0gc0g 17335  Grpcgrp 18838  invgcminusg 18839  Abelcabl 19686  1rcur 20092  Ringcrg 20144  CRingccrg 20145  Unitcui 20266  ℤRHomczrh 21429  ℤ/nczn 21432  logclog 26483  Λcvma 27022  DChrcdchr 27163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-rpss 7651  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-xnn0 12447  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-o1 15389  df-lo1 15390  df-sum 15586  df-ef 15966  df-e 15967  df-sin 15968  df-cos 15969  df-tan 15970  df-pi 15971  df-dvds 16156  df-gcd 16398  df-prm 16575  df-phi 16669  df-pc 16741  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-qus 17405  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-gim 19164  df-ga 19195  df-cntz 19222  df-oppg 19251  df-od 19433  df-gex 19434  df-pgp 19435  df-lsm 19541  df-pj1 19542  df-cmn 19687  df-abl 19688  df-cyg 19783  df-dprd 19902  df-dpj 19903  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-zring 21377  df-zrh 21433  df-zn 21436  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-0p 25591  df-limc 25787  df-dv 25788  df-ply 26113  df-idp 26114  df-coe 26115  df-dgr 26116  df-quot 26219  df-ulm 26306  df-log 26485  df-cxp 26486  df-atan 26797  df-em 26923  df-cht 27027  df-vma 27028  df-chp 27029  df-ppi 27030  df-mu 27031  df-dchr 27164
This theorem is referenced by:  dchrisum0  27451
  Copyright terms: Public domain W3C validator