MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0re Structured version   Visualization version   GIF version

Theorem dchrisum0re 27431
Description: Suppose 𝑋 is a non-principal Dirichlet character with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Then 𝑋 is a real character. Part of Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
dchrisum0.b (𝜑𝑋𝑊)
Assertion
Ref Expression
dchrisum0re (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Distinct variable groups:   𝑦,𝑚, 1   𝑚,𝑁,𝑦   𝜑,𝑚   𝑚,𝑍,𝑦   𝐷,𝑚,𝑦   𝑚,𝐿,𝑦   𝑚,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐺(𝑦,𝑚)   𝑊(𝑦,𝑚)

Proof of Theorem dchrisum0re
Dummy variables 𝑘 𝑛 𝑥 𝑓 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum2.g . . . 4 𝐺 = (DChr‘𝑁)
2 rpvmasum.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
3 rpvmasum2.d . . . 4 𝐷 = (Base‘𝐺)
4 eqid 2730 . . . 4 (Base‘𝑍) = (Base‘𝑍)
5 rpvmasum2.w . . . . . . 7 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
65ssrab3 4048 . . . . . 6 𝑊 ⊆ (𝐷 ∖ { 1 })
7 dchrisum0.b . . . . . 6 (𝜑𝑋𝑊)
86, 7sselid 3947 . . . . 5 (𝜑𝑋 ∈ (𝐷 ∖ { 1 }))
98eldifad 3929 . . . 4 (𝜑𝑋𝐷)
101, 2, 3, 4, 9dchrf 27160 . . 3 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
1110ffnd 6692 . 2 (𝜑𝑋 Fn (Base‘𝑍))
1210ffvelcdmda 7059 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
13 fvco3 6963 . . . . . 6 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
1410, 13sylan 580 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
15 logno1 26552 . . . . . . . 8 ¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)
16 1red 11182 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → 1 ∈ ℝ)
17 rpvmasum.l . . . . . . . . . . . . 13 𝐿 = (ℤRHom‘𝑍)
18 rpvmasum.a . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
19 rpvmasum2.1 . . . . . . . . . . . . 13 1 = (0g𝐺)
20 eqid 2730 . . . . . . . . . . . . 13 (Unit‘𝑍) = (Unit‘𝑍)
2118nnnn0d 12510 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
222zncrng 21461 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ CRing)
24 crngring 20161 . . . . . . . . . . . . . . 15 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ Ring)
26 eqid 2730 . . . . . . . . . . . . . . 15 (1r𝑍) = (1r𝑍)
2720, 261unit 20290 . . . . . . . . . . . . . 14 (𝑍 ∈ Ring → (1r𝑍) ∈ (Unit‘𝑍))
2825, 27syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑍) ∈ (Unit‘𝑍))
29 eqid 2730 . . . . . . . . . . . . 13 (𝐿 “ {(1r𝑍)}) = (𝐿 “ {(1r𝑍)})
30 eqidd 2731 . . . . . . . . . . . . 13 ((𝜑𝑓𝑊) → (1r𝑍) = (1r𝑍))
312, 17, 18, 1, 3, 19, 5, 20, 28, 29, 30rpvmasum2 27430 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3231adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) ∈ 𝑂(1))
3318phicld 16749 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
3433nnnn0d 12510 . . . . . . . . . . . . . . . . 17 (𝜑 → (ϕ‘𝑁) ∈ ℕ0)
3534adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ0)
3635nn0red 12511 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℝ)
37 fzfid 13945 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
38 inss1 4203 . . . . . . . . . . . . . . . . 17 ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))
39 ssfi 9143 . . . . . . . . . . . . . . . . 17 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
4037, 38, 39sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) ∈ Fin)
41 elinel1 4167 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)})) → 𝑛 ∈ (1...(⌊‘𝑥)))
42 elfznn 13521 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
4342adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
4441, 43sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℕ)
45 vmacl 27035 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
46 nndivre 12234 . . . . . . . . . . . . . . . . . 18 (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4745, 46mpancom 688 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4844, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4940, 48fsumrecl 15707 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
5036, 49remulcld 11211 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
51 relogcl 26491 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
5251adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
53 1re 11181 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
541, 3dchrfi 27173 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
5518, 54syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐷 ∈ Fin)
56 difss 4102 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∖ { 1 }) ⊆ 𝐷
576, 56sstri 3959 . . . . . . . . . . . . . . . . . . . 20 𝑊𝐷
58 ssfi 9143 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
5955, 57, 58sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑊 ∈ Fin)
60 hashcl 14328 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Fin → (♯‘𝑊) ∈ ℕ0)
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝑊) ∈ ℕ0)
6261nn0red 12511 . . . . . . . . . . . . . . . . 17 (𝜑 → (♯‘𝑊) ∈ ℝ)
63 resubcl 11493 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (1 − (♯‘𝑊)) ∈ ℝ)
6453, 62, 63sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − (♯‘𝑊)) ∈ ℝ)
6564adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (1 − (♯‘𝑊)) ∈ ℝ)
6652, 65remulcld 11211 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
6750, 66resubcld 11613 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
6867recnd 11209 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
6968adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℂ)
7051adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
7170recnd 11209 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
7251ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
7366ad2ant2r 747 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ)
7472, 73readdcld 11210 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
75 0red 11184 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ)
7650ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ)
77 2re 12267 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ∈ ℝ)
7962ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℝ)
8078, 79resubcld 11613 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ∈ ℝ)
81 log1 26501 . . . . . . . . . . . . . . . . 17 (log‘1) = 0
82 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
83 1rp 12962 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
84 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
85 logleb 26519 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8683, 84, 85sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
8782, 86mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
8881, 87eqbrtrrid 5146 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
8959ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑊 ∈ Fin)
90 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . 23 (invg𝐺) = (invg𝐺)
911, 3, 9, 90dchrinv 27179 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) = (∗ ∘ 𝑋))
921dchrabl 27172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
9318, 92syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 ∈ Abel)
94 ablgrp 19722 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐺 ∈ Grp)
963, 90grpinvcl 18926 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ 𝑋𝐷) → ((invg𝐺)‘𝑋) ∈ 𝐷)
9795, 9, 96syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ∈ 𝐷)
9891, 97eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
99 eldifsni 4757 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 ∈ (𝐷 ∖ { 1 }) → 𝑋1 )
1008, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋1 )
1013, 19grpidcl 18904 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ Grp → 1𝐷)
10295, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑1𝐷)
1033, 90, 95, 9, 102grpinv11 18946 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (((invg𝐺)‘𝑋) = ((invg𝐺)‘ 1 ) ↔ 𝑋 = 1 ))
104103necon3bid 2970 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ) ↔ 𝑋1 ))
105100, 104mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘𝑋) ≠ ((invg𝐺)‘ 1 ))
10619, 90grpinvid 18938 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 ∈ Grp → ((invg𝐺)‘ 1 ) = 1 )
10795, 106syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((invg𝐺)‘ 1 ) = 1 )
108105, 91, 1073netr3d 3002 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (∗ ∘ 𝑋) ≠ 1 )
109 eldifsn 4753 . . . . . . . . . . . . . . . . . . . . 21 ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ↔ ((∗ ∘ 𝑋) ∈ 𝐷 ∧ (∗ ∘ 𝑋) ≠ 1 ))
11098, 108, 109sylanbrc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }))
111 nnuz 12843 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
112 1zzd 12571 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ∈ ℤ)
113 2fveq3 6866 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑋‘(𝐿𝑛)) = (𝑋‘(𝐿𝑚)))
114 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚𝑛 = 𝑚)
115113, 114oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → ((𝑋‘(𝐿𝑛)) / 𝑛) = ((𝑋‘(𝐿𝑚)) / 𝑚))
116115fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
117 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))) = (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))
118 fvex 6874 . . . . . . . . . . . . . . . . . . . . . . . 24 (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ V
119116, 117, 118fvmpt 6971 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
120119adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
121 nnre 12200 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
122121adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
123122cjred 15199 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (∗‘𝑚) = 𝑚)
124123oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
12510adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → 𝑋:(Base‘𝑍)⟶ℂ)
1262, 4, 17znzrhfo 21464 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐿:ℤ–onto→(Base‘𝑍))
128 fof 6775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
129127, 128syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐿:ℤ⟶(Base‘𝑍))
130 nnz 12557 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
131 ffvelcdm 7056 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑚 ∈ ℤ) → (𝐿𝑚) ∈ (Base‘𝑍))
132129, 130, 131syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → (𝐿𝑚) ∈ (Base‘𝑍))
133125, 132ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → (𝑋‘(𝐿𝑚)) ∈ ℂ)
134 nncn 12201 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
136 nnne0 12227 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
137136adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
138133, 135, 137cjdivd 15196 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = ((∗‘(𝑋‘(𝐿𝑚))) / (∗‘𝑚)))
139 fvco3 6963 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋:(Base‘𝑍)⟶ℂ ∧ (𝐿𝑚) ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
140125, 132, 139syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ ℕ) → ((∗ ∘ 𝑋)‘(𝐿𝑚)) = (∗‘(𝑋‘(𝐿𝑚))))
141140oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚))
142124, 138, 1413eqtr4d 2775 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
143120, 142eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
144133cjcld 15169 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ ℕ) → (∗‘(𝑋‘(𝐿𝑚))) ∈ ℂ)
145144, 135, 137divcld 11965 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ ℕ) → ((∗‘(𝑋‘(𝐿𝑚))) / 𝑚) ∈ ℂ)
146141, 145eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ ℕ) → (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
147 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))
1482, 17, 18, 1, 3, 19, 9, 100, 147dchrmusumlema 27411 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
149 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
1507adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝑊)
15118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
1529adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋𝐷)
153100adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑋1 )
154 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
155 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
1562, 17, 151, 1, 3, 19, 152, 153, 147, 154, 149, 155, 5dchrvmaeq0 27422 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑋𝑊𝑡 = 0))
157150, 156mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑡 = 0)
158149, 157breqtrd 5136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
159158rexlimdvaa 3136 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
160159exlimdv 1933 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0))
161148, 160mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))) ⇝ 0)
162 seqex 13975 . . . . . . . . . . . . . . . . . . . . . . . 24 seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V
163162a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ∈ V)
164 2fveq3 6866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚 → (𝑋‘(𝐿𝑎)) = (𝑋‘(𝐿𝑚)))
165 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 = 𝑚𝑎 = 𝑚)
166164, 165oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = 𝑚 → ((𝑋‘(𝐿𝑎)) / 𝑎) = ((𝑋‘(𝐿𝑚)) / 𝑚))
167 ovex 7423 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ V
168166, 147, 167fvmpt 6971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ℕ → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
169168adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
170133, 135, 137divcld 11965 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
171169, 170eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) ∈ ℂ)
172111, 112, 171serf 14002 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))):ℕ⟶ℂ)
173172ffvelcdmda 7059 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘) ∈ ℂ)
174 fzfid 13945 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin)
175 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝜑)
176 elfznn 13521 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (1...𝑘) → 𝑚 ∈ ℕ)
177175, 176, 170syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑋‘(𝐿𝑚)) / 𝑚) ∈ ℂ)
178174, 177fsumcj 15783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
179175, 176, 169syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎))‘𝑚) = ((𝑋‘(𝐿𝑚)) / 𝑚))
180 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
181180, 111eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ‘1))
182179, 181, 177fsumser 15703 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘))
183182fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (∗‘Σ𝑚 ∈ (1...𝑘)((𝑋‘(𝐿𝑚)) / 𝑚)) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
184175, 176, 120syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → ((𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))‘𝑚) = (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)))
185170cjcld 15169 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ ℕ) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
186175, 176, 185syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑘)) → (∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) ∈ ℂ)
187184, 181, 186fsumser 15703 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → Σ𝑚 ∈ (1...𝑘)(∗‘((𝑋‘(𝐿𝑚)) / 𝑚)) = (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘))
188178, 183, 1873eqtr3rd 2774 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → (seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛))))‘𝑘) = (∗‘(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿𝑎)) / 𝑎)))‘𝑘)))
189111, 161, 163, 112, 173, 188climcj 15578 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ (∗‘0))
190 cj0 15131 . . . . . . . . . . . . . . . . . . . . . 22 (∗‘0) = 0
191189, 190breqtrdi 5151 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (∗‘((𝑋‘(𝐿𝑛)) / 𝑛)))) ⇝ 0)
192111, 112, 143, 146, 191isumclim 15730 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0)
193 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = (∗ ∘ 𝑋) → (𝑦‘(𝐿𝑚)) = ((∗ ∘ 𝑋)‘(𝐿𝑚)))
194193oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (∗ ∘ 𝑋) → ((𝑦‘(𝐿𝑚)) / 𝑚) = (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
195194sumeq2sdv 15676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (∗ ∘ 𝑋) → Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚))
196195eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (∗ ∘ 𝑋) → (Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0 ↔ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
197196, 5elrab2 3665 . . . . . . . . . . . . . . . . . . . 20 ((∗ ∘ 𝑋) ∈ 𝑊 ↔ ((∗ ∘ 𝑋) ∈ (𝐷 ∖ { 1 }) ∧ Σ𝑚 ∈ ℕ (((∗ ∘ 𝑋)‘(𝐿𝑚)) / 𝑚) = 0))
198110, 192, 197sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∗ ∘ 𝑋) ∈ 𝑊)
199198ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ∈ 𝑊)
2007ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑋𝑊)
201 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (∗ ∘ 𝑋) ≠ 𝑋)
20289, 199, 200, 201nehash2 14446 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 2 ≤ (♯‘𝑊))
203 suble0 11699 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
20477, 79, 203sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 − (♯‘𝑊)) ≤ 0 ↔ 2 ≤ (♯‘𝑊)))
205202, 204mpbird 257 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) ≤ 0)
20680, 75, 72, 88, 205lemul2ad 12130 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) ≤ ((log‘𝑥) · 0))
207 df-2 12256 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
208207oveq1i 7400 . . . . . . . . . . . . . . . . . 18 (2 − (♯‘𝑊)) = ((1 + 1) − (♯‘𝑊))
209 1cnd 11176 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ)
21079recnd 11209 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (♯‘𝑊) ∈ ℂ)
211209, 209, 210addsubassd 11560 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((1 + 1) − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
212208, 211eqtrid 2777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (2 − (♯‘𝑊)) = (1 + (1 − (♯‘𝑊))))
213212oveq2d 7406 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))))
21471adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ)
21564ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℝ)
216215recnd 11209 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 − (♯‘𝑊)) ∈ ℂ)
217214, 209, 216adddid 11205 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (1 + (1 − (♯‘𝑊)))) = (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
218214mulridd 11198 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 1) = (log‘𝑥))
219218oveq1d 7405 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) · 1) + ((log‘𝑥) · (1 − (♯‘𝑊)))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
220213, 217, 2193eqtrd 2769 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · (2 − (♯‘𝑊))) = ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))))
221214mul01d 11380 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) · 0) = 0)
222206, 220, 2213brtr3d 5141 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ 0)
22333nnred 12208 . . . . . . . . . . . . . . . 16 (𝜑 → (ϕ‘𝑁) ∈ ℝ)
224223ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℝ)
22549ad2ant2r 747 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛) ∈ ℝ)
22634ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (ϕ‘𝑁) ∈ ℕ0)
227226nn0ge0d 12513 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (ϕ‘𝑁))
22844, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → (Λ‘𝑛) ∈ ℝ)
229 vmage0 27038 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
23044, 229syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ (Λ‘𝑛))
23144nnred 12208 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 𝑛 ∈ ℝ)
23244nngt0d 12242 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 < 𝑛)
233 divge0 12059 . . . . . . . . . . . . . . . . . 18 ((((Λ‘𝑛) ∈ ℝ ∧ 0 ≤ (Λ‘𝑛)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((Λ‘𝑛) / 𝑛))
234228, 230, 231, 232, 233syl22anc 838 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
23540, 48, 234fsumge0 15768 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
236235ad2ant2r 747 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛))
237224, 225, 227, 236mulge0d 11762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
23874, 75, 76, 222, 237letrd 11338 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)))
239 leaddsub 11661 . . . . . . . . . . . . . 14 (((log‘𝑥) ∈ ℝ ∧ ((log‘𝑥) · (1 − (♯‘𝑊))) ∈ ℝ ∧ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ∈ ℝ) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24072, 73, 76, 239syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥) + ((log‘𝑥) · (1 − (♯‘𝑊)))) ≤ ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) ↔ (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
241238, 240mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
24272, 88absidd 15396 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) = (log‘𝑥))
24367ad2ant2r 747 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))) ∈ ℝ)
24475, 72, 243, 88, 241letrd 11338 . . . . . . . . . . . . 13 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
245243, 244absidd 15396 . . . . . . . . . . . 12 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊)))))
246241, 242, 2453brtr4d 5142 . . . . . . . . . . 11 (((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(log‘𝑥)) ≤ (abs‘(((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ (𝐿 “ {(1r𝑍)}))((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (♯‘𝑊))))))
24716, 32, 69, 71, 246o1le 15626 . . . . . . . . . 10 ((𝜑 ∧ (∗ ∘ 𝑋) ≠ 𝑋) → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1))
248247ex 412 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ≠ 𝑋 → (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1)))
249248necon1bd 2944 . . . . . . . 8 (𝜑 → (¬ (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) ∈ 𝑂(1) → (∗ ∘ 𝑋) = 𝑋))
25015, 249mpi 20 . . . . . . 7 (𝜑 → (∗ ∘ 𝑋) = 𝑋)
251250adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗ ∘ 𝑋) = 𝑋)
252251fveq1d 6863 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((∗ ∘ 𝑋)‘𝑥) = (𝑋𝑥))
25314, 252eqtr3d 2767 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑍)) → (∗‘(𝑋𝑥)) = (𝑋𝑥))
25412, 253cjrebd 15175 . . 3 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℝ)
255254ralrimiva 3126 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ)
256 ffnfv 7094 . 2 (𝑋:(Base‘𝑍)⟶ℝ ↔ (𝑋 Fn (Base‘𝑍) ∧ ∀𝑥 ∈ (Base‘𝑍)(𝑋𝑥) ∈ ℝ))
25711, 255, 256sylanbrc 583 1 (𝜑𝑋:(Base‘𝑍)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cin 3916  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  ccom 5645   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  +crp 12958  [,)cico 13315  ...cfz 13475  cfl 13759  seqcseq 13973  chash 14302  ccj 15069  abscabs 15207  cli 15457  𝑂(1)co1 15459  Σcsu 15659  ϕcphi 16741  Basecbs 17186  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  Abelcabl 19718  1rcur 20097  Ringcrg 20149  CRingccrg 20150  Unitcui 20271  ℤRHomczrh 21416  ℤ/nczn 21419  logclog 26470  Λcvma 27009  DChrcdchr 27150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-o1 15463  df-lo1 15464  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-tan 16044  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-phi 16743  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-qus 17479  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19198  df-ga 19229  df-cntz 19256  df-oppg 19285  df-od 19465  df-gex 19466  df-pgp 19467  df-lsm 19573  df-pj1 19574  df-cmn 19719  df-abl 19720  df-cyg 19815  df-dprd 19934  df-dpj 19935  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-0p 25578  df-limc 25774  df-dv 25775  df-ply 26100  df-idp 26101  df-coe 26102  df-dgr 26103  df-quot 26206  df-ulm 26293  df-log 26472  df-cxp 26473  df-atan 26784  df-em 26910  df-cht 27014  df-vma 27015  df-chp 27016  df-ppi 27017  df-mu 27018  df-dchr 27151
This theorem is referenced by:  dchrisum0  27438
  Copyright terms: Public domain W3C validator