Proof of Theorem cdlemg12b
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp2 1137 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇)) | 
| 3 |  | simp31 1209 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐺 ∈ 𝑇) | 
| 4 |  | simp32 1210 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≠ 𝑄) | 
| 5 |  | simp21 1206 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 6 |  | simp22l 1292 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) | 
| 7 |  | simp33 1211 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄)) | 
| 8 |  | cdlemg12.l | . . . . . 6
⊢  ≤ =
(le‘𝐾) | 
| 9 |  | cdlemg12.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 10 |  | cdlemg12.m | . . . . . 6
⊢  ∧ =
(meet‘𝐾) | 
| 11 |  | cdlemg12.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 12 |  | cdlemg12.h | . . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 13 |  | cdlemg12.t | . . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 14 |  | cdlemg12b.r | . . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 15 | 8, 9, 10, 11, 12, 13, 14 | cdlemg11b 40645 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ≠ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) | 
| 16 | 1, 5, 6, 3, 4, 7, 15 | syl123anc 1388 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ≠ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) | 
| 17 |  | simp1l 1197 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) | 
| 18 |  | simp1r 1198 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) | 
| 19 |  | eqid 2736 | . . . . . 6
⊢ ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 20 | 8, 9, 10, 11, 12, 19 | cdlemg3a 40600 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 21 | 17, 18, 5, 6, 20 | syl211anc 1377 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) = (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 22 |  | simp22 1207 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | 
| 23 | 12, 13, 8, 9, 11, 10, 19 | cdlemg2k 40604 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐺 ∈ 𝑇) → ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) = ((𝐺‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 24 | 1, 5, 22, 3, 23 | syl121anc 1376 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) = ((𝐺‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 25 | 16, 21, 24 | 3netr3d 3016 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ≠ ((𝐺‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 26 | 8, 9, 10, 11, 12, 13, 19 | cdlemg12a 40646 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ≠ ((𝐺‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) → ((𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ ((𝐺‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ≤ ((𝐹‘(𝐺‘𝑃)) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 27 | 1, 2, 3, 4, 25, 26 | syl113anc 1383 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ ((𝐺‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) ≤ ((𝐹‘(𝐺‘𝑃)) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 28 | 21, 24 | oveq12d 7450 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) = ((𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∧ ((𝐺‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) | 
| 29 |  | simp23 1208 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝑇) | 
| 30 | 12, 13, 8, 9, 11, 10, 19 | cdlemg2l 40606 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = ((𝐹‘(𝐺‘𝑃)) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 31 | 1, 5, 22, 29, 3, 30 | syl122anc 1380 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = ((𝐹‘(𝐺‘𝑃)) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) | 
| 32 | 27, 28, 31 | 3brtr4d 5174 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ∧ ¬ (𝑅‘𝐺) ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) ≤ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄)))) |