Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  algextdeglem1 Structured version   Visualization version   GIF version

Theorem algextdeglem1 32767
Description: Lemma for - algextdeg . (Contributed by Thierry Arnoux, 22-Mar-2025.)
Hypotheses
Ref Expression
algextdeg.k 𝐾 = (𝐸 β†Ύs 𝐹)
algextdeg.l 𝐿 = (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
algextdeg.f (πœ‘ β†’ 𝐸 ∈ Field)
algextdeg.e (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
algextdeg.a (πœ‘ β†’ 𝐴 ∈ (𝐸 IntgRing 𝐹))
algextdeglem.o 𝑂 = (𝐸 evalSub1 𝐹)
algextdeglem.y 𝑃 = (Poly1β€˜πΎ)
algextdeglem.u π‘ˆ = (Baseβ€˜π‘ƒ)
algextdeglem.g 𝐺 = (𝑝 ∈ π‘ˆ ↦ ((π‘‚β€˜π‘)β€˜π΄))
algextdeglem.1 𝑂 = (𝐿 evalSub1 𝐹)
algextdeglem.2 𝑃 = (Poly1β€˜(𝐿 β†Ύs 𝐹))
algextdeglem.3 𝑁 = (π‘₯ ∈ π‘ˆ ↦ [π‘₯](𝑃 ~QG 𝑍))
algextdeglem.4 𝑍 = (◑𝐺 β€œ {(0gβ€˜πΏ)})
algextdeglem.5 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
algextdeglem.6 𝐽 = (𝑝 ∈ (Baseβ€˜π‘„) ↦ βˆͺ (𝐺 β€œ 𝑝))
Assertion
Ref Expression
algextdeglem1 (πœ‘ β†’ (dimβ€˜π‘„) = (𝐿[:]𝐾))
Distinct variable groups:   𝐴,𝑝   𝐸,𝑝   𝐹,𝑝,π‘₯   𝐺,𝑝,π‘₯   𝐽,𝑝,π‘₯   𝐾,𝑝   𝐿,𝑝,π‘₯   π‘₯,𝑁   𝑂,𝑝   𝑃,𝑝,π‘₯   𝑄,𝑝,π‘₯   π‘ˆ,𝑝,π‘₯   𝑍,𝑝,π‘₯   πœ‘,𝑝,π‘₯
Allowed substitution hints:   𝐴(π‘₯)   𝐸(π‘₯)   𝐾(π‘₯)   𝑁(𝑝)   𝑂(π‘₯)

Proof of Theorem algextdeglem1
Dummy variable π‘ž is distinct from all other variables.
StepHypRef Expression
1 algextdeg.e . . . . . . . 8 (πœ‘ β†’ 𝐹 ∈ (SubDRingβ€˜πΈ))
2 issdrg 20403 . . . . . . . 8 (𝐹 ∈ (SubDRingβ€˜πΈ) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs 𝐹) ∈ DivRing))
31, 2sylib 217 . . . . . . 7 (πœ‘ β†’ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs 𝐹) ∈ DivRing))
43simp2d 1143 . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (SubRingβ€˜πΈ))
5 subrgsubg 20324 . . . . . 6 (𝐹 ∈ (SubRingβ€˜πΈ) β†’ 𝐹 ∈ (SubGrpβ€˜πΈ))
6 eqid 2732 . . . . . . 7 (Baseβ€˜πΈ) = (Baseβ€˜πΈ)
76subgss 19006 . . . . . 6 (𝐹 ∈ (SubGrpβ€˜πΈ) β†’ 𝐹 βŠ† (Baseβ€˜πΈ))
84, 5, 73syl 18 . . . . 5 (πœ‘ β†’ 𝐹 βŠ† (Baseβ€˜πΈ))
9 algextdeg.k . . . . . 6 𝐾 = (𝐸 β†Ύs 𝐹)
109, 6ressbas2 17181 . . . . 5 (𝐹 βŠ† (Baseβ€˜πΈ) β†’ 𝐹 = (Baseβ€˜πΎ))
118, 10syl 17 . . . 4 (πœ‘ β†’ 𝐹 = (Baseβ€˜πΎ))
1211fveq2d 6895 . . 3 (πœ‘ β†’ ((subringAlg β€˜πΏ)β€˜πΉ) = ((subringAlg β€˜πΏ)β€˜(Baseβ€˜πΎ)))
1312fveq2d 6895 . 2 (πœ‘ β†’ (dimβ€˜((subringAlg β€˜πΏ)β€˜πΉ)) = (dimβ€˜((subringAlg β€˜πΏ)β€˜(Baseβ€˜πΎ))))
14 eqid 2732 . . . . 5 (0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ)) = (0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))
15 algextdeglem.1 . . . . . 6 𝑂 = (𝐿 evalSub1 𝐹)
16 algextdeglem.2 . . . . . 6 𝑃 = (Poly1β€˜(𝐿 β†Ύs 𝐹))
17 eqid 2732 . . . . . 6 (Baseβ€˜πΏ) = (Baseβ€˜πΏ)
18 algextdeglem.u . . . . . 6 π‘ˆ = (Baseβ€˜π‘ƒ)
19 algextdeg.l . . . . . . . 8 𝐿 = (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
20 algextdeg.f . . . . . . . . 9 (πœ‘ β†’ 𝐸 ∈ Field)
21 algextdeglem.o . . . . . . . . . . . . 13 𝑂 = (𝐸 evalSub1 𝐹)
22 eqid 2732 . . . . . . . . . . . . 13 (0gβ€˜πΈ) = (0gβ€˜πΈ)
2320fldcrngd 20369 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐸 ∈ CRing)
2421, 9, 6, 22, 23, 4irngssv 32747 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐸 IntgRing 𝐹) βŠ† (Baseβ€˜πΈ))
25 algextdeg.a . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 ∈ (𝐸 IntgRing 𝐹))
2624, 25sseldd 3983 . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 ∈ (Baseβ€˜πΈ))
2726snssd 4812 . . . . . . . . . 10 (πœ‘ β†’ {𝐴} βŠ† (Baseβ€˜πΈ))
288, 27unssd 4186 . . . . . . . . 9 (πœ‘ β†’ (𝐹 βˆͺ {𝐴}) βŠ† (Baseβ€˜πΈ))
296, 20, 28fldgenfld 32405 . . . . . . . 8 (πœ‘ β†’ (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) ∈ Field)
3019, 29eqeltrid 2837 . . . . . . 7 (πœ‘ β†’ 𝐿 ∈ Field)
3130fldcrngd 20369 . . . . . 6 (πœ‘ β†’ 𝐿 ∈ CRing)
3220flddrngd 20368 . . . . . . . . . 10 (πœ‘ β†’ 𝐸 ∈ DivRing)
336, 32, 28fldgensdrg 32399 . . . . . . . . 9 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubDRingβ€˜πΈ))
34 issdrg 20403 . . . . . . . . 9 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubDRingβ€˜πΈ) ↔ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) ∈ DivRing))
3533, 34sylib 217 . . . . . . . 8 (πœ‘ β†’ (𝐸 ∈ DivRing ∧ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) ∈ DivRing))
3635simp2d 1143 . . . . . . 7 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ))
376, 32, 28fldgenssid 32398 . . . . . . . 8 (πœ‘ β†’ (𝐹 βˆͺ {𝐴}) βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
3837unssad 4187 . . . . . . 7 (πœ‘ β†’ 𝐹 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
3919subsubrg 20344 . . . . . . . 8 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) β†’ (𝐹 ∈ (SubRingβ€˜πΏ) ↔ (𝐹 ∈ (SubRingβ€˜πΈ) ∧ 𝐹 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))))
4039biimpar 478 . . . . . . 7 (((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ (𝐹 ∈ (SubRingβ€˜πΈ) ∧ 𝐹 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))) β†’ 𝐹 ∈ (SubRingβ€˜πΏ))
4136, 4, 38, 40syl12anc 835 . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (SubRingβ€˜πΏ))
4237unssbd 4188 . . . . . . . 8 (πœ‘ β†’ {𝐴} βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
436, 32, 28fldgenssv 32400 . . . . . . . . 9 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) βŠ† (Baseβ€˜πΈ))
4419, 6ressbas2 17181 . . . . . . . . 9 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) βŠ† (Baseβ€˜πΈ) β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) = (Baseβ€˜πΏ))
4543, 44syl 17 . . . . . . . 8 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) = (Baseβ€˜πΏ))
4642, 45sseqtrd 4022 . . . . . . 7 (πœ‘ β†’ {𝐴} βŠ† (Baseβ€˜πΏ))
47 snssg 4787 . . . . . . . 8 (𝐴 ∈ (𝐸 IntgRing 𝐹) β†’ (𝐴 ∈ (Baseβ€˜πΏ) ↔ {𝐴} βŠ† (Baseβ€˜πΏ)))
4847biimpar 478 . . . . . . 7 ((𝐴 ∈ (𝐸 IntgRing 𝐹) ∧ {𝐴} βŠ† (Baseβ€˜πΏ)) β†’ 𝐴 ∈ (Baseβ€˜πΏ))
4925, 46, 48syl2anc 584 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ (Baseβ€˜πΏ))
50 algextdeglem.g . . . . . 6 𝐺 = (𝑝 ∈ π‘ˆ ↦ ((π‘‚β€˜π‘)β€˜π΄))
51 eqid 2732 . . . . . 6 ((subringAlg β€˜πΏ)β€˜πΉ) = ((subringAlg β€˜πΏ)β€˜πΉ)
5215, 16, 17, 18, 31, 41, 49, 50, 51evls1maplmhm 32755 . . . . 5 (πœ‘ β†’ 𝐺 ∈ (𝑃 LMHom ((subringAlg β€˜πΏ)β€˜πΉ)))
53 eqid 2732 . . . . 5 (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}) = (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})
54 eqid 2732 . . . . 5 (𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))) = (𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))
5531adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ 𝐿 ∈ CRing)
5641adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ 𝐹 ∈ (SubRingβ€˜πΏ))
5749adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ 𝐴 ∈ (Baseβ€˜πΏ))
58 simpr 485 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ 𝑝 ∈ π‘ˆ)
5915, 16, 17, 18, 55, 56, 57, 58evls1fvcl 32753 . . . . . . . . . 10 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ ((π‘‚β€˜π‘)β€˜π΄) ∈ (Baseβ€˜πΏ))
6045adantr 481 . . . . . . . . . 10 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) = (Baseβ€˜πΏ))
6159, 60eleqtrrd 2836 . . . . . . . . 9 ((πœ‘ ∧ 𝑝 ∈ π‘ˆ) β†’ ((π‘‚β€˜π‘)β€˜π΄) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
6261ralrimiva 3146 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘ ∈ π‘ˆ ((π‘‚β€˜π‘)β€˜π΄) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
6350rnmptss 7121 . . . . . . . 8 (βˆ€π‘ ∈ π‘ˆ ((π‘‚β€˜π‘)β€˜π΄) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) β†’ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
6462, 63syl 17 . . . . . . 7 (πœ‘ β†’ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
6515, 16, 17, 18, 31, 41, 49, 50evls1maprhm 32754 . . . . . . . . . . 11 (πœ‘ β†’ 𝐺 ∈ (𝑃 RingHom 𝐿))
6619resrhm2b 20348 . . . . . . . . . . . 12 (((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†’ (𝐺 ∈ (𝑃 RingHom 𝐸) ↔ 𝐺 ∈ (𝑃 RingHom 𝐿)))
6766biimpar 478 . . . . . . . . . . 11 ((((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) ∧ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) ∧ 𝐺 ∈ (𝑃 RingHom 𝐿)) β†’ 𝐺 ∈ (𝑃 RingHom 𝐸))
6836, 64, 65, 67syl21anc 836 . . . . . . . . . 10 (πœ‘ β†’ 𝐺 ∈ (𝑃 RingHom 𝐸))
69 rnrhmsubrg 20351 . . . . . . . . . 10 (𝐺 ∈ (𝑃 RingHom 𝐸) β†’ ran 𝐺 ∈ (SubRingβ€˜πΈ))
7068, 69syl 17 . . . . . . . . 9 (πœ‘ β†’ ran 𝐺 ∈ (SubRingβ€˜πΈ))
7119oveq1i 7418 . . . . . . . . . . 11 (𝐿 β†Ύs ran 𝐺) = ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs ran 𝐺)
72 ovex 7441 . . . . . . . . . . . 12 (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ V
73 ressabs 17193 . . . . . . . . . . . 12 (((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ V ∧ ran 𝐺 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†’ ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs ran 𝐺) = (𝐸 β†Ύs ran 𝐺))
7472, 64, 73sylancr 587 . . . . . . . . . . 11 (πœ‘ β†’ ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs ran 𝐺) = (𝐸 β†Ύs ran 𝐺))
7571, 74eqtrid 2784 . . . . . . . . . 10 (πœ‘ β†’ (𝐿 β†Ύs ran 𝐺) = (𝐸 β†Ύs ran 𝐺))
76 eqid 2732 . . . . . . . . . . . . . . 15 (0gβ€˜πΏ) = (0gβ€˜πΏ)
77 rhmghm 20261 . . . . . . . . . . . . . . . 16 (𝐺 ∈ (𝑃 RingHom 𝐿) β†’ 𝐺 ∈ (𝑃 GrpHom 𝐿))
7865, 77syl 17 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐺 ∈ (𝑃 GrpHom 𝐿))
79 algextdeglem.4 . . . . . . . . . . . . . . 15 𝑍 = (◑𝐺 β€œ {(0gβ€˜πΏ)})
80 algextdeglem.5 . . . . . . . . . . . . . . 15 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍))
81 algextdeglem.6 . . . . . . . . . . . . . . 15 𝐽 = (𝑝 ∈ (Baseβ€˜π‘„) ↦ βˆͺ (𝐺 β€œ 𝑝))
82 algextdeglem.3 . . . . . . . . . . . . . . 15 𝑁 = (π‘₯ ∈ π‘ˆ ↦ [π‘₯](𝑃 ~QG 𝑍))
8376, 78, 79, 80, 81, 18, 82ghmquskerco 32524 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐺 = (𝐽 ∘ 𝑁))
8483rneqd 5937 . . . . . . . . . . . . 13 (πœ‘ β†’ ran 𝐺 = ran (𝐽 ∘ 𝑁))
8580a1i 11 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑄 = (𝑃 /s (𝑃 ~QG 𝑍)))
8618a1i 11 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ π‘ˆ = (Baseβ€˜π‘ƒ))
87 ovexd 7443 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (𝑃 ~QG 𝑍) ∈ V)
8819oveq1i 7418 . . . . . . . . . . . . . . . . . . 19 (𝐿 β†Ύs 𝐹) = ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs 𝐹)
89 ressabs 17193 . . . . . . . . . . . . . . . . . . . 20 (((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ V ∧ 𝐹 βŠ† (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†’ ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs 𝐹) = (𝐸 β†Ύs 𝐹))
9072, 38, 89sylancr 587 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ ((𝐸 β†Ύs (𝐸 fldGen (𝐹 βˆͺ {𝐴}))) β†Ύs 𝐹) = (𝐸 β†Ύs 𝐹))
9188, 90eqtrid 2784 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝐿 β†Ύs 𝐹) = (𝐸 β†Ύs 𝐹))
923simp3d 1144 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ DivRing)
9391, 92eqeltrd 2833 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (𝐿 β†Ύs 𝐹) ∈ DivRing)
9416, 93ply1lvec 32633 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑃 ∈ LVec)
9585, 86, 87, 94qusbas 17490 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘ˆ / (𝑃 ~QG 𝑍)) = (Baseβ€˜π‘„))
96 eqid 2732 . . . . . . . . . . . . . . . 16 (π‘ˆ / (𝑃 ~QG 𝑍)) = (π‘ˆ / (𝑃 ~QG 𝑍))
9776ghmker 19117 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝑃 GrpHom 𝐿) β†’ (◑𝐺 β€œ {(0gβ€˜πΏ)}) ∈ (NrmSGrpβ€˜π‘ƒ))
9878, 97syl 17 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (◑𝐺 β€œ {(0gβ€˜πΏ)}) ∈ (NrmSGrpβ€˜π‘ƒ))
9979, 98eqeltrid 2837 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑍 ∈ (NrmSGrpβ€˜π‘ƒ))
10018, 96, 82, 99qusrn 32515 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ran 𝑁 = (π‘ˆ / (𝑃 ~QG 𝑍)))
10152elexd 3494 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝐺 ∈ V)
102101adantr 481 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑝 ∈ (Baseβ€˜π‘„)) β†’ 𝐺 ∈ V)
103102imaexd 31899 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑝 ∈ (Baseβ€˜π‘„)) β†’ (𝐺 β€œ 𝑝) ∈ V)
104103uniexd 7731 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑝 ∈ (Baseβ€˜π‘„)) β†’ βˆͺ (𝐺 β€œ 𝑝) ∈ V)
10581, 104dmmptd 6695 . . . . . . . . . . . . . . 15 (πœ‘ β†’ dom 𝐽 = (Baseβ€˜π‘„))
10695, 100, 1053eqtr4rd 2783 . . . . . . . . . . . . . 14 (πœ‘ β†’ dom 𝐽 = ran 𝑁)
107 rncoeq 5974 . . . . . . . . . . . . . 14 (dom 𝐽 = ran 𝑁 β†’ ran (𝐽 ∘ 𝑁) = ran 𝐽)
108106, 107syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ ran (𝐽 ∘ 𝑁) = ran 𝐽)
10984, 108eqtrd 2772 . . . . . . . . . . . 12 (πœ‘ β†’ ran 𝐺 = ran 𝐽)
110109oveq2d 7424 . . . . . . . . . . 11 (πœ‘ β†’ (𝐿 β†Ύs ran 𝐺) = (𝐿 β†Ύs ran 𝐽))
111 eqid 2732 . . . . . . . . . . . 12 (𝐿 β†Ύs ran 𝐽) = (𝐿 β†Ύs ran 𝐽)
1129subrgcrng 20322 . . . . . . . . . . . . . . 15 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRingβ€˜πΈ)) β†’ 𝐾 ∈ CRing)
11323, 4, 112syl2anc 584 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐾 ∈ CRing)
114 algextdeglem.y . . . . . . . . . . . . . . 15 𝑃 = (Poly1β€˜πΎ)
115114ply1crng 21721 . . . . . . . . . . . . . 14 (𝐾 ∈ CRing β†’ 𝑃 ∈ CRing)
116113, 115syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑃 ∈ CRing)
11776, 65, 79, 80, 81, 116rhmquskerlem 32538 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐽 ∈ (𝑄 RingHom 𝐿))
11815, 16, 17, 18, 31, 41, 49, 50evls1maprnss 32756 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐹 βŠ† ran 𝐺)
119 eqid 2732 . . . . . . . . . . . . . . . . . 18 (1rβ€˜πΈ) = (1rβ€˜πΈ)
1209, 119subrg1 20328 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRingβ€˜πΈ) β†’ (1rβ€˜πΈ) = (1rβ€˜πΎ))
1214, 120syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1rβ€˜πΈ) = (1rβ€˜πΎ))
122119subrg1cl 20326 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (SubRingβ€˜πΈ) β†’ (1rβ€˜πΈ) ∈ 𝐹)
1234, 122syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1rβ€˜πΈ) ∈ 𝐹)
124121, 123eqeltrrd 2834 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (1rβ€˜πΎ) ∈ 𝐹)
125118, 124sseldd 3983 . . . . . . . . . . . . . 14 (πœ‘ β†’ (1rβ€˜πΎ) ∈ ran 𝐺)
126 drngnzr 20376 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ DivRing β†’ 𝐸 ∈ NzRing)
127119, 22nzrnz 20293 . . . . . . . . . . . . . . . . 17 (𝐸 ∈ NzRing β†’ (1rβ€˜πΈ) β‰  (0gβ€˜πΈ))
12832, 126, 1273syl 18 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (1rβ€˜πΈ) β‰  (0gβ€˜πΈ))
12923crnggrpd 20069 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ 𝐸 ∈ Grp)
130129grpmndd 18831 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝐸 ∈ Mnd)
131 sdrgsubrg 20406 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubDRingβ€˜πΈ) β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ))
132 subrgsubg 20324 . . . . . . . . . . . . . . . . . . 19 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubRingβ€˜πΈ) β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubGrpβ€˜πΈ))
13333, 131, 1323syl 18 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubGrpβ€˜πΈ))
13422subg0cl 19013 . . . . . . . . . . . . . . . . . 18 ((𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∈ (SubGrpβ€˜πΈ) β†’ (0gβ€˜πΈ) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
135133, 134syl 17 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (0gβ€˜πΈ) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
13619, 6, 22ress0g 18652 . . . . . . . . . . . . . . . . 17 ((𝐸 ∈ Mnd ∧ (0gβ€˜πΈ) ∈ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) ∧ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) βŠ† (Baseβ€˜πΈ)) β†’ (0gβ€˜πΈ) = (0gβ€˜πΏ))
137130, 135, 43, 136syl3anc 1371 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (0gβ€˜πΈ) = (0gβ€˜πΏ))
138128, 121, 1373netr3d 3017 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (1rβ€˜πΎ) β‰  (0gβ€˜πΏ))
139 nelsn 4668 . . . . . . . . . . . . . . 15 ((1rβ€˜πΎ) β‰  (0gβ€˜πΏ) β†’ Β¬ (1rβ€˜πΎ) ∈ {(0gβ€˜πΏ)})
140138, 139syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ Β¬ (1rβ€˜πΎ) ∈ {(0gβ€˜πΏ)})
141 nelne1 3039 . . . . . . . . . . . . . 14 (((1rβ€˜πΎ) ∈ ran 𝐺 ∧ Β¬ (1rβ€˜πΎ) ∈ {(0gβ€˜πΏ)}) β†’ ran 𝐺 β‰  {(0gβ€˜πΏ)})
142125, 140, 141syl2anc 584 . . . . . . . . . . . . 13 (πœ‘ β†’ ran 𝐺 β‰  {(0gβ€˜πΏ)})
143109, 142eqnetrrd 3009 . . . . . . . . . . . 12 (πœ‘ β†’ ran 𝐽 β‰  {(0gβ€˜πΏ)})
144 eqid 2732 . . . . . . . . . . . . 13 (opprβ€˜π‘ƒ) = (opprβ€˜π‘ƒ)
1459sdrgdrng 20405 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubDRingβ€˜πΈ) β†’ 𝐾 ∈ DivRing)
146 drngnzr 20376 . . . . . . . . . . . . . . 15 (𝐾 ∈ DivRing β†’ 𝐾 ∈ NzRing)
1471, 145, 1463syl 18 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐾 ∈ NzRing)
148114ply1nz 25638 . . . . . . . . . . . . . 14 (𝐾 ∈ NzRing β†’ 𝑃 ∈ NzRing)
149147, 148syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑃 ∈ NzRing)
1509fveq2i 6894 . . . . . . . . . . . . . . . . 17 (Poly1β€˜πΎ) = (Poly1β€˜(𝐸 β†Ύs 𝐹))
151114, 150eqtri 2760 . . . . . . . . . . . . . . . 16 𝑃 = (Poly1β€˜(𝐸 β†Ύs 𝐹))
152 eqid 2732 . . . . . . . . . . . . . . . 16 {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)} = {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)}
153 eqid 2732 . . . . . . . . . . . . . . . 16 (RSpanβ€˜π‘ƒ) = (RSpanβ€˜π‘ƒ)
154 eqid 2732 . . . . . . . . . . . . . . . 16 (idlGen1pβ€˜(𝐸 β†Ύs 𝐹)) = (idlGen1pβ€˜(𝐸 β†Ύs 𝐹))
15521, 151, 6, 20, 1, 26, 22, 152, 153, 154ply1annig1p 32760 . . . . . . . . . . . . . . 15 (πœ‘ β†’ {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)} = ((RSpanβ€˜π‘ƒ)β€˜{((idlGen1pβ€˜(𝐸 β†Ύs 𝐹))β€˜{π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)})}))
156 eqid 2732 . . . . . . . . . . . . . . . . . 18 {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΏ)} = {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΏ)}
15718mpteq1i 5244 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ π‘ˆ ↦ ((π‘‚β€˜π‘)β€˜π΄)) = (𝑝 ∈ (Baseβ€˜π‘ƒ) ↦ ((π‘‚β€˜π‘)β€˜π΄))
15850, 157eqtri 2760 . . . . . . . . . . . . . . . . . 18 𝐺 = (𝑝 ∈ (Baseβ€˜π‘ƒ) ↦ ((π‘‚β€˜π‘)β€˜π΄))
15915, 16, 17, 31, 41, 49, 76, 156, 158ply1annidllem 32757 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΏ)} = (◑𝐺 β€œ {(0gβ€˜πΏ)}))
16079, 159eqtr4id 2791 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑍 = {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΏ)})
161137eqeq2d 2743 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ) ↔ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΏ)))
162161rabbidv 3440 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)} = {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΏ)})
163160, 162eqtr4d 2775 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝑍 = {π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)})
164 eqid 2732 . . . . . . . . . . . . . . . . . 18 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
16521, 151, 6, 20, 1, 26, 22, 152, 153, 154, 164minplyval 32761 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) = ((idlGen1pβ€˜(𝐸 β†Ύs 𝐹))β€˜{π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)}))
166165sneqd 4640 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ {((𝐸 minPoly 𝐹)β€˜π΄)} = {((idlGen1pβ€˜(𝐸 β†Ύs 𝐹))β€˜{π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)})})
167166fveq2d 6895 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) = ((RSpanβ€˜π‘ƒ)β€˜{((idlGen1pβ€˜(𝐸 β†Ύs 𝐹))β€˜{π‘ž ∈ dom 𝑂 ∣ ((π‘‚β€˜π‘ž)β€˜π΄) = (0gβ€˜πΈ)})}))
168155, 163, 1673eqtr4d 2782 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝑍 = ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}))
169 eqid 2732 . . . . . . . . . . . . . . . 16 (0gβ€˜π‘ƒ) = (0gβ€˜π‘ƒ)
170 eqid 2732 . . . . . . . . . . . . . . . . . 18 (0gβ€˜(Poly1β€˜πΈ)) = (0gβ€˜(Poly1β€˜πΈ))
171170, 20, 1, 164, 25irngnminplynz 32766 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) β‰  (0gβ€˜(Poly1β€˜πΈ)))
172 eqid 2732 . . . . . . . . . . . . . . . . . 18 (Poly1β€˜πΈ) = (Poly1β€˜πΈ)
173172, 9, 114, 18, 4, 170ressply10g 32651 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ (0gβ€˜(Poly1β€˜πΈ)) = (0gβ€˜π‘ƒ))
174171, 173neeqtrd 3010 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) β‰  (0gβ€˜π‘ƒ))
17521, 151, 6, 20, 1, 26, 164, 169, 174minplyirred 32765 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) ∈ (Irredβ€˜π‘ƒ))
176 eqid 2732 . . . . . . . . . . . . . . . 16 ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) = ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)})
177 fldsdrgfld 20413 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRingβ€˜πΈ)) β†’ (𝐸 β†Ύs 𝐹) ∈ Field)
17820, 1, 177syl2anc 584 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ Field)
1799, 178eqeltrid 2837 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝐾 ∈ Field)
180114ply1pid 25696 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ Field β†’ 𝑃 ∈ PID)
181179, 180syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ 𝑃 ∈ PID)
18221, 151, 6, 20, 1, 26, 22, 152, 153, 154, 164minplycl 32762 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) ∈ (Baseβ€˜π‘ƒ))
183182, 86eleqtrrd 2836 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ((𝐸 minPoly 𝐹)β€˜π΄) ∈ π‘ˆ)
184116crngringd 20068 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ 𝑃 ∈ Ring)
185183snssd 4812 . . . . . . . . . . . . . . . . 17 (πœ‘ β†’ {((𝐸 minPoly 𝐹)β€˜π΄)} βŠ† π‘ˆ)
186 eqid 2732 . . . . . . . . . . . . . . . . . 18 (LIdealβ€˜π‘ƒ) = (LIdealβ€˜π‘ƒ)
187153, 18, 186rspcl 20846 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ Ring ∧ {((𝐸 minPoly 𝐹)β€˜π΄)} βŠ† π‘ˆ) β†’ ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) ∈ (LIdealβ€˜π‘ƒ))
188184, 185, 187syl2anc 584 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) ∈ (LIdealβ€˜π‘ƒ))
18918, 153, 169, 176, 181, 183, 174, 188mxidlirred 32583 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) ∈ (MaxIdealβ€˜π‘ƒ) ↔ ((𝐸 minPoly 𝐹)β€˜π΄) ∈ (Irredβ€˜π‘ƒ)))
190175, 189mpbird 256 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((RSpanβ€˜π‘ƒ)β€˜{((𝐸 minPoly 𝐹)β€˜π΄)}) ∈ (MaxIdealβ€˜π‘ƒ))
191168, 190eqeltrd 2833 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ (MaxIdealβ€˜π‘ƒ))
192 eqid 2732 . . . . . . . . . . . . . . . 16 (MaxIdealβ€˜π‘ƒ) = (MaxIdealβ€˜π‘ƒ)
193192, 144crngmxidl 32580 . . . . . . . . . . . . . . 15 (𝑃 ∈ CRing β†’ (MaxIdealβ€˜π‘ƒ) = (MaxIdealβ€˜(opprβ€˜π‘ƒ)))
194116, 193syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ (MaxIdealβ€˜π‘ƒ) = (MaxIdealβ€˜(opprβ€˜π‘ƒ)))
195191, 194eleqtrd 2835 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑍 ∈ (MaxIdealβ€˜(opprβ€˜π‘ƒ)))
196144, 80, 149, 191, 195qsdrngi 32604 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑄 ∈ DivRing)
197111, 76, 117, 143, 196rndrhmcl 32391 . . . . . . . . . . 11 (πœ‘ β†’ (𝐿 β†Ύs ran 𝐽) ∈ DivRing)
198110, 197eqeltrd 2833 . . . . . . . . . 10 (πœ‘ β†’ (𝐿 β†Ύs ran 𝐺) ∈ DivRing)
19975, 198eqeltrrd 2834 . . . . . . . . 9 (πœ‘ β†’ (𝐸 β†Ύs ran 𝐺) ∈ DivRing)
200 issdrg 20403 . . . . . . . . 9 (ran 𝐺 ∈ (SubDRingβ€˜πΈ) ↔ (𝐸 ∈ DivRing ∧ ran 𝐺 ∈ (SubRingβ€˜πΈ) ∧ (𝐸 β†Ύs ran 𝐺) ∈ DivRing))
20132, 70, 199, 200syl3anbrc 1343 . . . . . . . 8 (πœ‘ β†’ ran 𝐺 ∈ (SubDRingβ€˜πΈ))
20292drngringd 20364 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐸 β†Ύs 𝐹) ∈ Ring)
203 eqid 2732 . . . . . . . . . . . . . 14 (var1β€˜(𝐸 β†Ύs 𝐹)) = (var1β€˜(𝐸 β†Ύs 𝐹))
204203, 151, 18vr1cl 21740 . . . . . . . . . . . . 13 ((𝐸 β†Ύs 𝐹) ∈ Ring β†’ (var1β€˜(𝐸 β†Ύs 𝐹)) ∈ π‘ˆ)
205202, 204syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ (var1β€˜(𝐸 β†Ύs 𝐹)) ∈ π‘ˆ)
206 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑝 = (var1β€˜(𝐸 β†Ύs 𝐹)) β†’ (π‘‚β€˜π‘) = (π‘‚β€˜(var1β€˜(𝐸 β†Ύs 𝐹))))
207206fveq1d 6893 . . . . . . . . . . . . . 14 (𝑝 = (var1β€˜(𝐸 β†Ύs 𝐹)) β†’ ((π‘‚β€˜π‘)β€˜π΄) = ((π‘‚β€˜(var1β€˜(𝐸 β†Ύs 𝐹)))β€˜π΄))
208207eqeq2d 2743 . . . . . . . . . . . . 13 (𝑝 = (var1β€˜(𝐸 β†Ύs 𝐹)) β†’ (𝐴 = ((π‘‚β€˜π‘)β€˜π΄) ↔ 𝐴 = ((π‘‚β€˜(var1β€˜(𝐸 β†Ύs 𝐹)))β€˜π΄)))
209208adantl 482 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑝 = (var1β€˜(𝐸 β†Ύs 𝐹))) β†’ (𝐴 = ((π‘‚β€˜π‘)β€˜π΄) ↔ 𝐴 = ((π‘‚β€˜(var1β€˜(𝐸 β†Ύs 𝐹)))β€˜π΄)))
21091fveq2d 6895 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (var1β€˜(𝐿 β†Ύs 𝐹)) = (var1β€˜(𝐸 β†Ύs 𝐹)))
211210fveq2d 6895 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘‚β€˜(var1β€˜(𝐿 β†Ύs 𝐹))) = (π‘‚β€˜(var1β€˜(𝐸 β†Ύs 𝐹))))
212 eqid 2732 . . . . . . . . . . . . . . . 16 (var1β€˜(𝐿 β†Ύs 𝐹)) = (var1β€˜(𝐿 β†Ύs 𝐹))
213 eqid 2732 . . . . . . . . . . . . . . . 16 (𝐿 β†Ύs 𝐹) = (𝐿 β†Ύs 𝐹)
21415, 212, 213, 17, 31, 41evls1var 21856 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (π‘‚β€˜(var1β€˜(𝐿 β†Ύs 𝐹))) = ( I β†Ύ (Baseβ€˜πΏ)))
215211, 214eqtr3d 2774 . . . . . . . . . . . . . 14 (πœ‘ β†’ (π‘‚β€˜(var1β€˜(𝐸 β†Ύs 𝐹))) = ( I β†Ύ (Baseβ€˜πΏ)))
216215fveq1d 6893 . . . . . . . . . . . . 13 (πœ‘ β†’ ((π‘‚β€˜(var1β€˜(𝐸 β†Ύs 𝐹)))β€˜π΄) = (( I β†Ύ (Baseβ€˜πΏ))β€˜π΄))
217 fvresi 7170 . . . . . . . . . . . . . 14 (𝐴 ∈ (Baseβ€˜πΏ) β†’ (( I β†Ύ (Baseβ€˜πΏ))β€˜π΄) = 𝐴)
21849, 217syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ (( I β†Ύ (Baseβ€˜πΏ))β€˜π΄) = 𝐴)
219216, 218eqtr2d 2773 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 = ((π‘‚β€˜(var1β€˜(𝐸 β†Ύs 𝐹)))β€˜π΄))
220205, 209, 219rspcedvd 3614 . . . . . . . . . . 11 (πœ‘ β†’ βˆƒπ‘ ∈ π‘ˆ 𝐴 = ((π‘‚β€˜π‘)β€˜π΄))
22150, 220, 25elrnmptd 5960 . . . . . . . . . 10 (πœ‘ β†’ 𝐴 ∈ ran 𝐺)
222221snssd 4812 . . . . . . . . 9 (πœ‘ β†’ {𝐴} βŠ† ran 𝐺)
223118, 222unssd 4186 . . . . . . . 8 (πœ‘ β†’ (𝐹 βˆͺ {𝐴}) βŠ† ran 𝐺)
2246, 32, 201, 223fldgenssp 32403 . . . . . . 7 (πœ‘ β†’ (𝐸 fldGen (𝐹 βˆͺ {𝐴})) βŠ† ran 𝐺)
22564, 224eqssd 3999 . . . . . 6 (πœ‘ β†’ ran 𝐺 = (𝐸 fldGen (𝐹 βˆͺ {𝐴})))
226 eqidd 2733 . . . . . . 7 (πœ‘ β†’ ((subringAlg β€˜πΏ)β€˜πΉ) = ((subringAlg β€˜πΏ)β€˜πΉ))
22738, 45sseqtrd 4022 . . . . . . 7 (πœ‘ β†’ 𝐹 βŠ† (Baseβ€˜πΏ))
228226, 227srabase 20791 . . . . . 6 (πœ‘ β†’ (Baseβ€˜πΏ) = (Baseβ€˜((subringAlg β€˜πΏ)β€˜πΉ)))
229225, 45, 2283eqtrd 2776 . . . . 5 (πœ‘ β†’ ran 𝐺 = (Baseβ€˜((subringAlg β€˜πΏ)β€˜πΉ)))
230 imaeq2 6055 . . . . . . 7 (π‘ž = 𝑝 β†’ (𝐺 β€œ π‘ž) = (𝐺 β€œ 𝑝))
231230unieqd 4922 . . . . . 6 (π‘ž = 𝑝 β†’ βˆͺ (𝐺 β€œ π‘ž) = βˆͺ (𝐺 β€œ 𝑝))
232231cbvmptv 5261 . . . . 5 (π‘ž ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ π‘ž)) = (𝑝 ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ 𝑝))
23314, 52, 53, 54, 229, 232lmhmqusker 32529 . . . 4 (πœ‘ β†’ (π‘ž ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ π‘ž)) ∈ ((𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))) LMIso ((subringAlg β€˜πΏ)β€˜πΉ)))
234 eqidd 2733 . . . . . . . . . . . . . 14 (πœ‘ β†’ (0gβ€˜πΏ) = (0gβ€˜πΏ))
235226, 234, 227sralmod0 20809 . . . . . . . . . . . . 13 (πœ‘ β†’ (0gβ€˜πΏ) = (0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ)))
236235sneqd 4640 . . . . . . . . . . . 12 (πœ‘ β†’ {(0gβ€˜πΏ)} = {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})
237236imaeq2d 6059 . . . . . . . . . . 11 (πœ‘ β†’ (◑𝐺 β€œ {(0gβ€˜πΏ)}) = (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))
23879, 237eqtrid 2784 . . . . . . . . . 10 (πœ‘ β†’ 𝑍 = (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))
239238oveq2d 7424 . . . . . . . . 9 (πœ‘ β†’ (𝑃 ~QG 𝑍) = (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))
240239oveq2d 7424 . . . . . . . 8 (πœ‘ β†’ (𝑃 /s (𝑃 ~QG 𝑍)) = (𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))))
24180, 240eqtrid 2784 . . . . . . 7 (πœ‘ β†’ 𝑄 = (𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))))
242241fveq2d 6895 . . . . . 6 (πœ‘ β†’ (Baseβ€˜π‘„) = (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))))
243242mpteq1d 5243 . . . . 5 (πœ‘ β†’ (𝑝 ∈ (Baseβ€˜π‘„) ↦ βˆͺ (𝐺 β€œ 𝑝)) = (𝑝 ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ 𝑝)))
244243, 81, 2323eqtr4g 2797 . . . 4 (πœ‘ β†’ 𝐽 = (π‘ž ∈ (Baseβ€˜(𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))})))) ↦ βˆͺ (𝐺 β€œ π‘ž)))
245241oveq1d 7423 . . . 4 (πœ‘ β†’ (𝑄 LMIso ((subringAlg β€˜πΏ)β€˜πΉ)) = ((𝑃 /s (𝑃 ~QG (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}))) LMIso ((subringAlg β€˜πΏ)β€˜πΉ)))
246233, 244, 2453eltr4d 2848 . . 3 (πœ‘ β†’ 𝐽 ∈ (𝑄 LMIso ((subringAlg β€˜πΏ)β€˜πΉ)))
247 eqid 2732 . . . . . . 7 (LSubSpβ€˜π‘ƒ) = (LSubSpβ€˜π‘ƒ)
24853, 14, 247lmhmkerlss 20661 . . . . . 6 (𝐺 ∈ (𝑃 LMHom ((subringAlg β€˜πΏ)β€˜πΉ)) β†’ (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}) ∈ (LSubSpβ€˜π‘ƒ))
24952, 248syl 17 . . . . 5 (πœ‘ β†’ (◑𝐺 β€œ {(0gβ€˜((subringAlg β€˜πΏ)β€˜πΉ))}) ∈ (LSubSpβ€˜π‘ƒ))
250238, 249eqeltrd 2833 . . . 4 (πœ‘ β†’ 𝑍 ∈ (LSubSpβ€˜π‘ƒ))
25180, 94, 250quslvec 32466 . . 3 (πœ‘ β†’ 𝑄 ∈ LVec)
252246, 251lmimdim 32684 . 2 (πœ‘ β†’ (dimβ€˜π‘„) = (dimβ€˜((subringAlg β€˜πΏ)β€˜πΉ)))
25390, 88, 93eqtr4g 2797 . . . . 5 (πœ‘ β†’ (𝐿 β†Ύs 𝐹) = 𝐾)
25411oveq2d 7424 . . . . 5 (πœ‘ β†’ (𝐿 β†Ύs 𝐹) = (𝐿 β†Ύs (Baseβ€˜πΎ)))
255253, 254eqtr3d 2774 . . . 4 (πœ‘ β†’ 𝐾 = (𝐿 β†Ύs (Baseβ€˜πΎ)))
25611, 41eqeltrrd 2834 . . . 4 (πœ‘ β†’ (Baseβ€˜πΎ) ∈ (SubRingβ€˜πΏ))
257 brfldext 32721 . . . . 5 ((𝐿 ∈ Field ∧ 𝐾 ∈ Field) β†’ (𝐿/FldExt𝐾 ↔ (𝐾 = (𝐿 β†Ύs (Baseβ€˜πΎ)) ∧ (Baseβ€˜πΎ) ∈ (SubRingβ€˜πΏ))))
258257biimpar 478 . . . 4 (((𝐿 ∈ Field ∧ 𝐾 ∈ Field) ∧ (𝐾 = (𝐿 β†Ύs (Baseβ€˜πΎ)) ∧ (Baseβ€˜πΎ) ∈ (SubRingβ€˜πΏ))) β†’ 𝐿/FldExt𝐾)
25930, 179, 255, 256, 258syl22anc 837 . . 3 (πœ‘ β†’ 𝐿/FldExt𝐾)
260 extdgval 32728 . . 3 (𝐿/FldExt𝐾 β†’ (𝐿[:]𝐾) = (dimβ€˜((subringAlg β€˜πΏ)β€˜(Baseβ€˜πΎ))))
261259, 260syl 17 . 2 (πœ‘ β†’ (𝐿[:]𝐾) = (dimβ€˜((subringAlg β€˜πΏ)β€˜(Baseβ€˜πΎ))))
26213, 252, 2613eqtr4d 2782 1 (πœ‘ β†’ (dimβ€˜π‘„) = (𝐿[:]𝐾))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432  Vcvv 3474   βˆͺ cun 3946   βŠ† wss 3948  {csn 4628  βˆͺ cuni 4908   class class class wbr 5148   ↦ cmpt 5231   I cid 5573  β—‘ccnv 5675  dom cdm 5676  ran crn 5677   β†Ύ cres 5678   β€œ cima 5679   ∘ ccom 5680  β€˜cfv 6543  (class class class)co 7408  [cec 8700   / cqs 8701  Basecbs 17143   β†Ύs cress 17172  0gc0g 17384   /s cqus 17450  Mndcmnd 18624  SubGrpcsubg 18999  NrmSGrpcnsg 19000   ~QG cqg 19001   GrpHom cghm 19088  1rcur 20003  Ringcrg 20055  CRingccrg 20056  opprcoppr 20148  Irredcir 20169   RingHom crh 20247  NzRingcnzr 20290  SubRingcsubrg 20314  DivRingcdr 20356  Fieldcfield 20357  SubDRingcsdrg 20401  LSubSpclss 20541   LMHom clmhm 20629   LMIso clmim 20630  LVecclvec 20712  subringAlg csra 20780  LIdealclidl 20782  RSpancrsp 20783  PIDcpid 20897  var1cv1 21699  Poly1cpl1 21700   evalSub1 ces1 21831  idlGen1pcig1p 25646   fldGen cfldgen 32395  MaxIdealcmxidl 32570  dimcldim 32679  /FldExtcfldext 32712  [:]cextdg 32715   IntgRing cirng 32742   minPoly cminply 32751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-reg 9586  ax-inf2 9635  ax-ac2 10457  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-rpss 7712  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-tpos 8210  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-ec 8704  df-qs 8708  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-inf 9437  df-oi 9504  df-r1 9758  df-rank 9759  df-dju 9895  df-card 9933  df-acn 9936  df-ac 10110  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-xnn0 12544  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ocomp 17217  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-imas 17453  df-qus 17454  df-mre 17529  df-mrc 17530  df-mri 17531  df-acs 17532  df-proset 18247  df-drs 18248  df-poset 18265  df-ipo 18480  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-submnd 18671  df-grp 18821  df-minusg 18822  df-sbg 18823  df-mulg 18950  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19089  df-gim 19132  df-cntz 19180  df-oppg 19209  df-lsm 19503  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-srg 20009  df-ring 20057  df-cring 20058  df-oppr 20149  df-dvdsr 20170  df-unit 20171  df-irred 20172  df-invr 20201  df-dvr 20214  df-rnghom 20250  df-nzr 20291  df-subrg 20316  df-drng 20358  df-field 20359  df-sdrg 20402  df-lmod 20472  df-lss 20542  df-lsp 20582  df-lmhm 20632  df-lmim 20633  df-lbs 20685  df-lvec 20713  df-sra 20784  df-rgmod 20785  df-lidl 20786  df-rsp 20787  df-2idl 20856  df-lpidl 20880  df-lpir 20881  df-rlreg 20898  df-domn 20899  df-idom 20900  df-pid 20901  df-cnfld 20944  df-dsmm 21286  df-frlm 21301  df-uvc 21337  df-lindf 21360  df-linds 21361  df-assa 21407  df-asp 21408  df-ascl 21409  df-psr 21461  df-mvr 21462  df-mpl 21463  df-opsr 21465  df-evls 21634  df-evl 21635  df-psr1 21703  df-vr1 21704  df-ply1 21705  df-coe1 21706  df-evls1 21833  df-evl1 21834  df-mdeg 25569  df-deg1 25570  df-mon1 25647  df-uc1p 25648  df-q1p 25649  df-r1p 25650  df-ig1p 25651  df-fldgen 32396  df-mxidl 32571  df-dim 32680  df-fldext 32716  df-extdg 32717  df-irng 32743  df-minply 32752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator