![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem1 | Structured version Visualization version GIF version |
Description: Lemma for algextdeg 33716. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
Ref | Expression |
---|---|
algextdeglem1 | ⊢ (𝜑 → (𝐿 ↾s 𝐹) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeg.l | . . . 4 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
2 | 1 | oveq1i 7458 | . . 3 ⊢ (𝐿 ↾s 𝐹) = ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s 𝐹) |
3 | ovex 7481 | . . . 4 ⊢ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V | |
4 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
5 | algextdeg.e | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
6 | issdrg 20811 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
7 | 5, 6 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
8 | 7 | simp1d 1142 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
9 | 7 | simp2d 1143 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
10 | subrgsubg 20605 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
11 | 4 | subgss 19167 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
12 | 9, 10, 11 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
13 | eqid 2740 | . . . . . . . . . 10 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
14 | algextdeg.k | . . . . . . . . . 10 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
15 | eqid 2740 | . . . . . . . . . 10 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
16 | algextdeg.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ∈ Field) | |
17 | 16 | fldcrngd 20764 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐸 ∈ CRing) |
18 | 13, 14, 4, 15, 17, 9 | irngssv 33688 | . . . . . . . . 9 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
19 | algextdeg.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
20 | 18, 19 | sseldd 4009 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
21 | 20 | snssd 4834 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
22 | 12, 21 | unssd 4215 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
23 | 4, 8, 22 | fldgenssid 33280 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
24 | 23 | unssad 4216 | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
25 | ressabs 17308 | . . . 4 ⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s 𝐹) = (𝐸 ↾s 𝐹)) | |
26 | 3, 24, 25 | sylancr 586 | . . 3 ⊢ (𝜑 → ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s 𝐹) = (𝐸 ↾s 𝐹)) |
27 | 2, 26 | eqtrid 2792 | . 2 ⊢ (𝜑 → (𝐿 ↾s 𝐹) = (𝐸 ↾s 𝐹)) |
28 | 27, 14 | eqtr4di 2798 | 1 ⊢ (𝜑 → (𝐿 ↾s 𝐹) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 0gc0g 17499 SubGrpcsubg 19160 SubRingcsubrg 20595 DivRingcdr 20751 Fieldcfield 20752 SubDRingcsdrg 20809 evalSub1 ces1 22338 deg1cdg1 26113 fldGen cfldgen 33277 IntgRing cirng 33683 minPoly cminply 33692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-field 20754 df-sdrg 20810 df-lmod 20882 df-lss 20953 df-lsp 20993 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-evls 22121 df-psr1 22202 df-ply1 22204 df-evls1 22340 df-mon1 26190 df-fldgen 33278 df-irng 33684 |
This theorem is referenced by: algextdeglem4 33711 |
Copyright terms: Public domain | W3C validator |