| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > algextdeglem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for algextdeg 33692. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| algextdeg.k | ⊢ 𝐾 = (𝐸 ↾s 𝐹) |
| algextdeg.l | ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| algextdeg.d | ⊢ 𝐷 = (deg1‘𝐸) |
| algextdeg.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| algextdeg.f | ⊢ (𝜑 → 𝐸 ∈ Field) |
| algextdeg.e | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| algextdeg.a | ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) |
| Ref | Expression |
|---|---|
| algextdeglem1 | ⊢ (𝜑 → (𝐿 ↾s 𝐹) = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algextdeg.l | . . . 4 ⊢ 𝐿 = (𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) | |
| 2 | 1 | oveq1i 7359 | . . 3 ⊢ (𝐿 ↾s 𝐹) = ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s 𝐹) |
| 3 | ovex 7382 | . . . 4 ⊢ (𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 5 | algextdeg.e | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 6 | issdrg 20673 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) | |
| 7 | 5, 6 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸 ↾s 𝐹) ∈ DivRing)) |
| 8 | 7 | simp1d 1142 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ DivRing) |
| 9 | 7 | simp2d 1143 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 10 | subrgsubg 20462 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) | |
| 11 | 4 | subgss 19006 | . . . . . . . 8 ⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝐹 ⊆ (Base‘𝐸)) |
| 12 | 9, 10, 11 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 13 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) | |
| 14 | algextdeg.k | . . . . . . . . . 10 ⊢ 𝐾 = (𝐸 ↾s 𝐹) | |
| 15 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝐸) = (0g‘𝐸) | |
| 16 | algextdeg.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 17 | 16 | fldcrngd 20627 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 18 | 13, 14, 4, 15, 17, 9 | irngssv 33655 | . . . . . . . . 9 ⊢ (𝜑 → (𝐸 IntgRing 𝐹) ⊆ (Base‘𝐸)) |
| 19 | algextdeg.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ (𝐸 IntgRing 𝐹)) | |
| 20 | 18, 19 | sseldd 3936 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐸)) |
| 21 | 20 | snssd 4760 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ⊆ (Base‘𝐸)) |
| 22 | 12, 21 | unssd 4143 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (Base‘𝐸)) |
| 23 | 4, 8, 22 | fldgenssid 33252 | . . . . 5 ⊢ (𝜑 → (𝐹 ∪ {𝐴}) ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 24 | 23 | unssad 4144 | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) |
| 25 | ressabs 17159 | . . . 4 ⊢ (((𝐸 fldGen (𝐹 ∪ {𝐴})) ∈ V ∧ 𝐹 ⊆ (𝐸 fldGen (𝐹 ∪ {𝐴}))) → ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s 𝐹) = (𝐸 ↾s 𝐹)) | |
| 26 | 3, 24, 25 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝐸 ↾s (𝐸 fldGen (𝐹 ∪ {𝐴}))) ↾s 𝐹) = (𝐸 ↾s 𝐹)) |
| 27 | 2, 26 | eqtrid 2776 | . 2 ⊢ (𝜑 → (𝐿 ↾s 𝐹) = (𝐸 ↾s 𝐹)) |
| 28 | 27, 14 | eqtr4di 2782 | 1 ⊢ (𝜑 → (𝐿 ↾s 𝐹) = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ⊆ wss 3903 {csn 4577 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 0gc0g 17343 SubGrpcsubg 18999 SubRingcsubrg 20454 DivRingcdr 20614 Fieldcfield 20615 SubDRingcsdrg 20671 evalSub1 ces1 22198 deg1cdg1 25957 fldGen cfldgen 33249 IntgRing cirng 33650 minPoly cminply 33666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-field 20617 df-sdrg 20672 df-lmod 20765 df-lss 20835 df-lsp 20875 df-assa 21760 df-asp 21761 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-evls 21979 df-psr1 22062 df-ply1 22064 df-evls1 22200 df-mon1 26034 df-fldgen 33250 df-irng 33651 |
| This theorem is referenced by: algextdeglem4 33687 |
| Copyright terms: Public domain | W3C validator |