Step | Hyp | Ref
| Expression |
1 | | algextdeg.e |
. . . . . . . 8
β’ (π β πΉ β (SubDRingβπΈ)) |
2 | | issdrg 20403 |
. . . . . . . 8
β’ (πΉ β (SubDRingβπΈ) β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
3 | 1, 2 | sylib 217 |
. . . . . . 7
β’ (π β (πΈ β DivRing β§ πΉ β (SubRingβπΈ) β§ (πΈ βΎs πΉ) β DivRing)) |
4 | 3 | simp2d 1143 |
. . . . . 6
β’ (π β πΉ β (SubRingβπΈ)) |
5 | | subrgsubg 20324 |
. . . . . 6
β’ (πΉ β (SubRingβπΈ) β πΉ β (SubGrpβπΈ)) |
6 | | eqid 2732 |
. . . . . . 7
β’
(BaseβπΈ) =
(BaseβπΈ) |
7 | 6 | subgss 19006 |
. . . . . 6
β’ (πΉ β (SubGrpβπΈ) β πΉ β (BaseβπΈ)) |
8 | 4, 5, 7 | 3syl 18 |
. . . . 5
β’ (π β πΉ β (BaseβπΈ)) |
9 | | algextdeg.k |
. . . . . 6
β’ πΎ = (πΈ βΎs πΉ) |
10 | 9, 6 | ressbas2 17181 |
. . . . 5
β’ (πΉ β (BaseβπΈ) β πΉ = (BaseβπΎ)) |
11 | 8, 10 | syl 17 |
. . . 4
β’ (π β πΉ = (BaseβπΎ)) |
12 | 11 | fveq2d 6895 |
. . 3
β’ (π β ((subringAlg βπΏ)βπΉ) = ((subringAlg βπΏ)β(BaseβπΎ))) |
13 | 12 | fveq2d 6895 |
. 2
β’ (π β (dimβ((subringAlg
βπΏ)βπΉ)) = (dimβ((subringAlg
βπΏ)β(BaseβπΎ)))) |
14 | | eqid 2732 |
. . . . 5
β’
(0gβ((subringAlg βπΏ)βπΉ)) = (0gβ((subringAlg
βπΏ)βπΉ)) |
15 | | algextdeglem.1 |
. . . . . 6
β’ π = (πΏ evalSub1 πΉ) |
16 | | algextdeglem.2 |
. . . . . 6
β’ π =
(Poly1β(πΏ
βΎs πΉ)) |
17 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΏ) =
(BaseβπΏ) |
18 | | algextdeglem.u |
. . . . . 6
β’ π = (Baseβπ) |
19 | | algextdeg.l |
. . . . . . . 8
β’ πΏ = (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) |
20 | | algextdeg.f |
. . . . . . . . 9
β’ (π β πΈ β Field) |
21 | | algextdeglem.o |
. . . . . . . . . . . . 13
β’ π = (πΈ evalSub1 πΉ) |
22 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(0gβπΈ) = (0gβπΈ) |
23 | 20 | fldcrngd 20369 |
. . . . . . . . . . . . 13
β’ (π β πΈ β CRing) |
24 | 21, 9, 6, 22, 23, 4 | irngssv 32747 |
. . . . . . . . . . . 12
β’ (π β (πΈ IntgRing πΉ) β (BaseβπΈ)) |
25 | | algextdeg.a |
. . . . . . . . . . . 12
β’ (π β π΄ β (πΈ IntgRing πΉ)) |
26 | 24, 25 | sseldd 3983 |
. . . . . . . . . . 11
β’ (π β π΄ β (BaseβπΈ)) |
27 | 26 | snssd 4812 |
. . . . . . . . . 10
β’ (π β {π΄} β (BaseβπΈ)) |
28 | 8, 27 | unssd 4186 |
. . . . . . . . 9
β’ (π β (πΉ βͺ {π΄}) β (BaseβπΈ)) |
29 | 6, 20, 28 | fldgenfld 32405 |
. . . . . . . 8
β’ (π β (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) β Field) |
30 | 19, 29 | eqeltrid 2837 |
. . . . . . 7
β’ (π β πΏ β Field) |
31 | 30 | fldcrngd 20369 |
. . . . . 6
β’ (π β πΏ β CRing) |
32 | 20 | flddrngd 20368 |
. . . . . . . . . 10
β’ (π β πΈ β DivRing) |
33 | 6, 32, 28 | fldgensdrg 32399 |
. . . . . . . . 9
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ)) |
34 | | issdrg 20403 |
. . . . . . . . 9
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ) β (πΈ β DivRing β§ (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) β DivRing)) |
35 | 33, 34 | sylib 217 |
. . . . . . . 8
β’ (π β (πΈ β DivRing β§ (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) β DivRing)) |
36 | 35 | simp2d 1143 |
. . . . . . 7
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ)) |
37 | 6, 32, 28 | fldgenssid 32398 |
. . . . . . . 8
β’ (π β (πΉ βͺ {π΄}) β (πΈ fldGen (πΉ βͺ {π΄}))) |
38 | 37 | unssad 4187 |
. . . . . . 7
β’ (π β πΉ β (πΈ fldGen (πΉ βͺ {π΄}))) |
39 | 19 | subsubrg 20344 |
. . . . . . . 8
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β (πΉ β (SubRingβπΏ) β (πΉ β (SubRingβπΈ) β§ πΉ β (πΈ fldGen (πΉ βͺ {π΄}))))) |
40 | 39 | biimpar 478 |
. . . . . . 7
β’ (((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ (πΉ β (SubRingβπΈ) β§ πΉ β (πΈ fldGen (πΉ βͺ {π΄})))) β πΉ β (SubRingβπΏ)) |
41 | 36, 4, 38, 40 | syl12anc 835 |
. . . . . 6
β’ (π β πΉ β (SubRingβπΏ)) |
42 | 37 | unssbd 4188 |
. . . . . . . 8
β’ (π β {π΄} β (πΈ fldGen (πΉ βͺ {π΄}))) |
43 | 6, 32, 28 | fldgenssv 32400 |
. . . . . . . . 9
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ)) |
44 | 19, 6 | ressbas2 17181 |
. . . . . . . . 9
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) = (BaseβπΏ)) |
45 | 43, 44 | syl 17 |
. . . . . . . 8
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) = (BaseβπΏ)) |
46 | 42, 45 | sseqtrd 4022 |
. . . . . . 7
β’ (π β {π΄} β (BaseβπΏ)) |
47 | | snssg 4787 |
. . . . . . . 8
β’ (π΄ β (πΈ IntgRing πΉ) β (π΄ β (BaseβπΏ) β {π΄} β (BaseβπΏ))) |
48 | 47 | biimpar 478 |
. . . . . . 7
β’ ((π΄ β (πΈ IntgRing πΉ) β§ {π΄} β (BaseβπΏ)) β π΄ β (BaseβπΏ)) |
49 | 25, 46, 48 | syl2anc 584 |
. . . . . 6
β’ (π β π΄ β (BaseβπΏ)) |
50 | | algextdeglem.g |
. . . . . 6
β’ πΊ = (π β π β¦ ((πβπ)βπ΄)) |
51 | | eqid 2732 |
. . . . . 6
β’
((subringAlg βπΏ)βπΉ) = ((subringAlg βπΏ)βπΉ) |
52 | 15, 16, 17, 18, 31, 41, 49, 50, 51 | evls1maplmhm 32755 |
. . . . 5
β’ (π β πΊ β (π LMHom ((subringAlg βπΏ)βπΉ))) |
53 | | eqid 2732 |
. . . . 5
β’ (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}) = (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}) |
54 | | eqid 2732 |
. . . . 5
β’ (π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) = (π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) |
55 | 31 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β πΏ β CRing) |
56 | 41 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β πΉ β (SubRingβπΏ)) |
57 | 49 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β π΄ β (BaseβπΏ)) |
58 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β§ π β π) β π β π) |
59 | 15, 16, 17, 18, 55, 56, 57, 58 | evls1fvcl 32753 |
. . . . . . . . . 10
β’ ((π β§ π β π) β ((πβπ)βπ΄) β (BaseβπΏ)) |
60 | 45 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β π) β (πΈ fldGen (πΉ βͺ {π΄})) = (BaseβπΏ)) |
61 | 59, 60 | eleqtrrd 2836 |
. . . . . . . . 9
β’ ((π β§ π β π) β ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄}))) |
62 | 61 | ralrimiva 3146 |
. . . . . . . 8
β’ (π β βπ β π ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄}))) |
63 | 50 | rnmptss 7121 |
. . . . . . . 8
β’
(βπ β
π ((πβπ)βπ΄) β (πΈ fldGen (πΉ βͺ {π΄})) β ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) |
64 | 62, 63 | syl 17 |
. . . . . . 7
β’ (π β ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) |
65 | 15, 16, 17, 18, 31, 41, 49, 50 | evls1maprhm 32754 |
. . . . . . . . . . 11
β’ (π β πΊ β (π RingHom πΏ)) |
66 | 19 | resrhm2b 20348 |
. . . . . . . . . . . 12
β’ (((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) β (πΊ β (π RingHom πΈ) β πΊ β (π RingHom πΏ))) |
67 | 66 | biimpar 478 |
. . . . . . . . . . 11
β’ ((((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β§ ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) β§ πΊ β (π RingHom πΏ)) β πΊ β (π RingHom πΈ)) |
68 | 36, 64, 65, 67 | syl21anc 836 |
. . . . . . . . . 10
β’ (π β πΊ β (π RingHom πΈ)) |
69 | | rnrhmsubrg 20351 |
. . . . . . . . . 10
β’ (πΊ β (π RingHom πΈ) β ran πΊ β (SubRingβπΈ)) |
70 | 68, 69 | syl 17 |
. . . . . . . . 9
β’ (π β ran πΊ β (SubRingβπΈ)) |
71 | 19 | oveq1i 7418 |
. . . . . . . . . . 11
β’ (πΏ βΎs ran πΊ) = ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs ran πΊ) |
72 | | ovex 7441 |
. . . . . . . . . . . 12
β’ (πΈ fldGen (πΉ βͺ {π΄})) β V |
73 | | ressabs 17193 |
. . . . . . . . . . . 12
β’ (((πΈ fldGen (πΉ βͺ {π΄})) β V β§ ran πΊ β (πΈ fldGen (πΉ βͺ {π΄}))) β ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs ran πΊ) = (πΈ βΎs ran πΊ)) |
74 | 72, 64, 73 | sylancr 587 |
. . . . . . . . . . 11
β’ (π β ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs ran πΊ) = (πΈ βΎs ran πΊ)) |
75 | 71, 74 | eqtrid 2784 |
. . . . . . . . . 10
β’ (π β (πΏ βΎs ran πΊ) = (πΈ βΎs ran πΊ)) |
76 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(0gβπΏ) = (0gβπΏ) |
77 | | rhmghm 20261 |
. . . . . . . . . . . . . . . 16
β’ (πΊ β (π RingHom πΏ) β πΊ β (π GrpHom πΏ)) |
78 | 65, 77 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β πΊ β (π GrpHom πΏ)) |
79 | | algextdeglem.4 |
. . . . . . . . . . . . . . 15
β’ π = (β‘πΊ β {(0gβπΏ)}) |
80 | | algextdeglem.5 |
. . . . . . . . . . . . . . 15
β’ π = (π /s (π ~QG π)) |
81 | | algextdeglem.6 |
. . . . . . . . . . . . . . 15
β’ π½ = (π β (Baseβπ) β¦ βͺ
(πΊ β π)) |
82 | | algextdeglem.3 |
. . . . . . . . . . . . . . 15
β’ π = (π₯ β π β¦ [π₯](π ~QG π)) |
83 | 76, 78, 79, 80, 81, 18, 82 | ghmquskerco 32524 |
. . . . . . . . . . . . . 14
β’ (π β πΊ = (π½ β π)) |
84 | 83 | rneqd 5937 |
. . . . . . . . . . . . 13
β’ (π β ran πΊ = ran (π½ β π)) |
85 | 80 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π β π = (π /s (π ~QG π))) |
86 | 18 | a1i 11 |
. . . . . . . . . . . . . . . 16
β’ (π β π = (Baseβπ)) |
87 | | ovexd 7443 |
. . . . . . . . . . . . . . . 16
β’ (π β (π ~QG π) β V) |
88 | 19 | oveq1i 7418 |
. . . . . . . . . . . . . . . . . . 19
β’ (πΏ βΎs πΉ) = ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs πΉ) |
89 | | ressabs 17193 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((πΈ fldGen (πΉ βͺ {π΄})) β V β§ πΉ β (πΈ fldGen (πΉ βͺ {π΄}))) β ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs πΉ) = (πΈ βΎs πΉ)) |
90 | 72, 38, 89 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β ((πΈ βΎs (πΈ fldGen (πΉ βͺ {π΄}))) βΎs πΉ) = (πΈ βΎs πΉ)) |
91 | 88, 90 | eqtrid 2784 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΏ βΎs πΉ) = (πΈ βΎs πΉ)) |
92 | 3 | simp3d 1144 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΈ βΎs πΉ) β DivRing) |
93 | 91, 92 | eqeltrd 2833 |
. . . . . . . . . . . . . . . . 17
β’ (π β (πΏ βΎs πΉ) β DivRing) |
94 | 16, 93 | ply1lvec 32633 |
. . . . . . . . . . . . . . . 16
β’ (π β π β LVec) |
95 | 85, 86, 87, 94 | qusbas 17490 |
. . . . . . . . . . . . . . 15
β’ (π β (π / (π ~QG π)) = (Baseβπ)) |
96 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’ (π / (π ~QG π)) = (π / (π ~QG π)) |
97 | 76 | ghmker 19117 |
. . . . . . . . . . . . . . . . . 18
β’ (πΊ β (π GrpHom πΏ) β (β‘πΊ β {(0gβπΏ)}) β (NrmSGrpβπ)) |
98 | 78, 97 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β (β‘πΊ β {(0gβπΏ)}) β (NrmSGrpβπ)) |
99 | 79, 98 | eqeltrid 2837 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (NrmSGrpβπ)) |
100 | 18, 96, 82, 99 | qusrn 32515 |
. . . . . . . . . . . . . . 15
β’ (π β ran π = (π / (π ~QG π))) |
101 | 52 | elexd 3494 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΊ β V) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (Baseβπ)) β πΊ β V) |
103 | 102 | imaexd 31899 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β (Baseβπ)) β (πΊ β π) β V) |
104 | 103 | uniexd 7731 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β (Baseβπ)) β βͺ
(πΊ β π) β V) |
105 | 81, 104 | dmmptd 6695 |
. . . . . . . . . . . . . . 15
β’ (π β dom π½ = (Baseβπ)) |
106 | 95, 100, 105 | 3eqtr4rd 2783 |
. . . . . . . . . . . . . 14
β’ (π β dom π½ = ran π) |
107 | | rncoeq 5974 |
. . . . . . . . . . . . . 14
β’ (dom
π½ = ran π β ran (π½ β π) = ran π½) |
108 | 106, 107 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β ran (π½ β π) = ran π½) |
109 | 84, 108 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ (π β ran πΊ = ran π½) |
110 | 109 | oveq2d 7424 |
. . . . . . . . . . 11
β’ (π β (πΏ βΎs ran πΊ) = (πΏ βΎs ran π½)) |
111 | | eqid 2732 |
. . . . . . . . . . . 12
β’ (πΏ βΎs ran π½) = (πΏ βΎs ran π½) |
112 | 9 | subrgcrng 20322 |
. . . . . . . . . . . . . . 15
β’ ((πΈ β CRing β§ πΉ β (SubRingβπΈ)) β πΎ β CRing) |
113 | 23, 4, 112 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ (π β πΎ β CRing) |
114 | | algextdeglem.y |
. . . . . . . . . . . . . . 15
β’ π = (Poly1βπΎ) |
115 | 114 | ply1crng 21721 |
. . . . . . . . . . . . . 14
β’ (πΎ β CRing β π β CRing) |
116 | 113, 115 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β CRing) |
117 | 76, 65, 79, 80, 81, 116 | rhmquskerlem 32538 |
. . . . . . . . . . . 12
β’ (π β π½ β (π RingHom πΏ)) |
118 | 15, 16, 17, 18, 31, 41, 49, 50 | evls1maprnss 32756 |
. . . . . . . . . . . . . . 15
β’ (π β πΉ β ran πΊ) |
119 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(1rβπΈ) = (1rβπΈ) |
120 | 9, 119 | subrg1 20328 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ β (SubRingβπΈ) β
(1rβπΈ) =
(1rβπΎ)) |
121 | 4, 120 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β (1rβπΈ) = (1rβπΎ)) |
122 | 119 | subrg1cl 20326 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ β (SubRingβπΈ) β
(1rβπΈ)
β πΉ) |
123 | 4, 122 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β (1rβπΈ) β πΉ) |
124 | 121, 123 | eqeltrrd 2834 |
. . . . . . . . . . . . . . 15
β’ (π β (1rβπΎ) β πΉ) |
125 | 118, 124 | sseldd 3983 |
. . . . . . . . . . . . . 14
β’ (π β (1rβπΎ) β ran πΊ) |
126 | | drngnzr 20376 |
. . . . . . . . . . . . . . . . 17
β’ (πΈ β DivRing β πΈ β NzRing) |
127 | 119, 22 | nzrnz 20293 |
. . . . . . . . . . . . . . . . 17
β’ (πΈ β NzRing β
(1rβπΈ)
β (0gβπΈ)) |
128 | 32, 126, 127 | 3syl 18 |
. . . . . . . . . . . . . . . 16
β’ (π β (1rβπΈ) β
(0gβπΈ)) |
129 | 23 | crnggrpd 20069 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΈ β Grp) |
130 | 129 | grpmndd 18831 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΈ β Mnd) |
131 | | sdrgsubrg 20406 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubDRingβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ)) |
132 | | subrgsubg 20324 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubRingβπΈ) β (πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ)) |
133 | 33, 131, 132 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ)) |
134 | 22 | subg0cl 19013 |
. . . . . . . . . . . . . . . . . 18
β’ ((πΈ fldGen (πΉ βͺ {π΄})) β (SubGrpβπΈ) β (0gβπΈ) β (πΈ fldGen (πΉ βͺ {π΄}))) |
135 | 133, 134 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’ (π β (0gβπΈ) β (πΈ fldGen (πΉ βͺ {π΄}))) |
136 | 19, 6, 22 | ress0g 18652 |
. . . . . . . . . . . . . . . . 17
β’ ((πΈ β Mnd β§
(0gβπΈ)
β (πΈ fldGen (πΉ βͺ {π΄})) β§ (πΈ fldGen (πΉ βͺ {π΄})) β (BaseβπΈ)) β (0gβπΈ) = (0gβπΏ)) |
137 | 130, 135,
43, 136 | syl3anc 1371 |
. . . . . . . . . . . . . . . 16
β’ (π β (0gβπΈ) = (0gβπΏ)) |
138 | 128, 121,
137 | 3netr3d 3017 |
. . . . . . . . . . . . . . 15
β’ (π β (1rβπΎ) β
(0gβπΏ)) |
139 | | nelsn 4668 |
. . . . . . . . . . . . . . 15
β’
((1rβπΎ) β (0gβπΏ) β Β¬
(1rβπΎ)
β {(0gβπΏ)}) |
140 | 138, 139 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β Β¬
(1rβπΎ)
β {(0gβπΏ)}) |
141 | | nelne1 3039 |
. . . . . . . . . . . . . 14
β’
(((1rβπΎ) β ran πΊ β§ Β¬ (1rβπΎ) β
{(0gβπΏ)})
β ran πΊ β
{(0gβπΏ)}) |
142 | 125, 140,
141 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (π β ran πΊ β {(0gβπΏ)}) |
143 | 109, 142 | eqnetrrd 3009 |
. . . . . . . . . . . 12
β’ (π β ran π½ β {(0gβπΏ)}) |
144 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(opprβπ) = (opprβπ) |
145 | 9 | sdrgdrng 20405 |
. . . . . . . . . . . . . . 15
β’ (πΉ β (SubDRingβπΈ) β πΎ β DivRing) |
146 | | drngnzr 20376 |
. . . . . . . . . . . . . . 15
β’ (πΎ β DivRing β πΎ β NzRing) |
147 | 1, 145, 146 | 3syl 18 |
. . . . . . . . . . . . . 14
β’ (π β πΎ β NzRing) |
148 | 114 | ply1nz 25638 |
. . . . . . . . . . . . . 14
β’ (πΎ β NzRing β π β NzRing) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β NzRing) |
150 | 9 | fveq2i 6894 |
. . . . . . . . . . . . . . . . 17
β’
(Poly1βπΎ) = (Poly1β(πΈ βΎs πΉ)) |
151 | 114, 150 | eqtri 2760 |
. . . . . . . . . . . . . . . 16
β’ π =
(Poly1β(πΈ
βΎs πΉ)) |
152 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} |
153 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(RSpanβπ) =
(RSpanβπ) |
154 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(idlGen1pβ(πΈ βΎs πΉ)) = (idlGen1pβ(πΈ βΎs πΉ)) |
155 | 21, 151, 6, 20, 1, 26, 22, 152, 153, 154 | ply1annig1p 32760 |
. . . . . . . . . . . . . . 15
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = ((RSpanβπ)β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})})) |
156 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’ {π β dom π β£ ((πβπ)βπ΄) = (0gβπΏ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΏ)} |
157 | 18 | mpteq1i 5244 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β π β¦ ((πβπ)βπ΄)) = (π β (Baseβπ) β¦ ((πβπ)βπ΄)) |
158 | 50, 157 | eqtri 2760 |
. . . . . . . . . . . . . . . . . 18
β’ πΊ = (π β (Baseβπ) β¦ ((πβπ)βπ΄)) |
159 | 15, 16, 17, 31, 41, 49, 76, 156, 158 | ply1annidllem 32757 |
. . . . . . . . . . . . . . . . 17
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΏ)} = (β‘πΊ β {(0gβπΏ)})) |
160 | 79, 159 | eqtr4id 2791 |
. . . . . . . . . . . . . . . 16
β’ (π β π = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΏ)}) |
161 | 137 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . 17
β’ (π β (((πβπ)βπ΄) = (0gβπΈ) β ((πβπ)βπ΄) = (0gβπΏ))) |
162 | 161 | rabbidv 3440 |
. . . . . . . . . . . . . . . 16
β’ (π β {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)} = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΏ)}) |
163 | 160, 162 | eqtr4d 2775 |
. . . . . . . . . . . . . . 15
β’ (π β π = {π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)}) |
164 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’ (πΈ minPoly πΉ) = (πΈ minPoly πΉ) |
165 | 21, 151, 6, 20, 1, 26, 22, 152, 153, 154, 164 | minplyval 32761 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((πΈ minPoly πΉ)βπ΄) = ((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})) |
166 | 165 | sneqd 4640 |
. . . . . . . . . . . . . . . 16
β’ (π β {((πΈ minPoly πΉ)βπ΄)} = {((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})}) |
167 | 166 | fveq2d 6895 |
. . . . . . . . . . . . . . 15
β’ (π β ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) = ((RSpanβπ)β{((idlGen1pβ(πΈ βΎs πΉ))β{π β dom π β£ ((πβπ)βπ΄) = (0gβπΈ)})})) |
168 | 155, 163,
167 | 3eqtr4d 2782 |
. . . . . . . . . . . . . 14
β’ (π β π = ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)})) |
169 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(0gβπ) = (0gβπ) |
170 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(0gβ(Poly1βπΈ)) =
(0gβ(Poly1βπΈ)) |
171 | 170, 20, 1, 164, 25 | irngnminplynz 32766 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((πΈ minPoly πΉ)βπ΄) β
(0gβ(Poly1βπΈ))) |
172 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(Poly1βπΈ) = (Poly1βπΈ) |
173 | 172, 9, 114, 18, 4, 170 | ressply10g 32651 |
. . . . . . . . . . . . . . . . 17
β’ (π β
(0gβ(Poly1βπΈ)) = (0gβπ)) |
174 | 171, 173 | neeqtrd 3010 |
. . . . . . . . . . . . . . . 16
β’ (π β ((πΈ minPoly πΉ)βπ΄) β (0gβπ)) |
175 | 21, 151, 6, 20, 1, 26, 164, 169, 174 | minplyirred 32765 |
. . . . . . . . . . . . . . 15
β’ (π β ((πΈ minPoly πΉ)βπ΄) β (Irredβπ)) |
176 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) = ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) |
177 | | fldsdrgfld 20413 |
. . . . . . . . . . . . . . . . . . 19
β’ ((πΈ β Field β§ πΉ β (SubDRingβπΈ)) β (πΈ βΎs πΉ) β Field) |
178 | 20, 1, 177 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
β’ (π β (πΈ βΎs πΉ) β Field) |
179 | 9, 178 | eqeltrid 2837 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΎ β Field) |
180 | 114 | ply1pid 25696 |
. . . . . . . . . . . . . . . . 17
β’ (πΎ β Field β π β PID) |
181 | 179, 180 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β π β PID) |
182 | 21, 151, 6, 20, 1, 26, 22, 152, 153, 154, 164 | minplycl 32762 |
. . . . . . . . . . . . . . . . 17
β’ (π β ((πΈ minPoly πΉ)βπ΄) β (Baseβπ)) |
183 | 182, 86 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . 16
β’ (π β ((πΈ minPoly πΉ)βπ΄) β π) |
184 | 116 | crngringd 20068 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β Ring) |
185 | 183 | snssd 4812 |
. . . . . . . . . . . . . . . . 17
β’ (π β {((πΈ minPoly πΉ)βπ΄)} β π) |
186 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
β’
(LIdealβπ) =
(LIdealβπ) |
187 | 153, 18, 186 | rspcl 20846 |
. . . . . . . . . . . . . . . . 17
β’ ((π β Ring β§ {((πΈ minPoly πΉ)βπ΄)} β π) β ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) β (LIdealβπ)) |
188 | 184, 185,
187 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ (π β ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) β (LIdealβπ)) |
189 | 18, 153, 169, 176, 181, 183, 174, 188 | mxidlirred 32583 |
. . . . . . . . . . . . . . 15
β’ (π β (((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) β (MaxIdealβπ) β ((πΈ minPoly πΉ)βπ΄) β (Irredβπ))) |
190 | 175, 189 | mpbird 256 |
. . . . . . . . . . . . . 14
β’ (π β ((RSpanβπ)β{((πΈ minPoly πΉ)βπ΄)}) β (MaxIdealβπ)) |
191 | 168, 190 | eqeltrd 2833 |
. . . . . . . . . . . . 13
β’ (π β π β (MaxIdealβπ)) |
192 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(MaxIdealβπ) =
(MaxIdealβπ) |
193 | 192, 144 | crngmxidl 32580 |
. . . . . . . . . . . . . . 15
β’ (π β CRing β
(MaxIdealβπ) =
(MaxIdealβ(opprβπ))) |
194 | 116, 193 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (MaxIdealβπ) =
(MaxIdealβ(opprβπ))) |
195 | 191, 194 | eleqtrd 2835 |
. . . . . . . . . . . . 13
β’ (π β π β
(MaxIdealβ(opprβπ))) |
196 | 144, 80, 149, 191, 195 | qsdrngi 32604 |
. . . . . . . . . . . 12
β’ (π β π β DivRing) |
197 | 111, 76, 117, 143, 196 | rndrhmcl 32391 |
. . . . . . . . . . 11
β’ (π β (πΏ βΎs ran π½) β DivRing) |
198 | 110, 197 | eqeltrd 2833 |
. . . . . . . . . 10
β’ (π β (πΏ βΎs ran πΊ) β DivRing) |
199 | 75, 198 | eqeltrrd 2834 |
. . . . . . . . 9
β’ (π β (πΈ βΎs ran πΊ) β DivRing) |
200 | | issdrg 20403 |
. . . . . . . . 9
β’ (ran
πΊ β
(SubDRingβπΈ) β
(πΈ β DivRing β§ ran
πΊ β
(SubRingβπΈ) β§
(πΈ βΎs ran
πΊ) β
DivRing)) |
201 | 32, 70, 199, 200 | syl3anbrc 1343 |
. . . . . . . 8
β’ (π β ran πΊ β (SubDRingβπΈ)) |
202 | 92 | drngringd 20364 |
. . . . . . . . . . . . 13
β’ (π β (πΈ βΎs πΉ) β Ring) |
203 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(var1β(πΈ βΎs πΉ)) = (var1β(πΈ βΎs πΉ)) |
204 | 203, 151,
18 | vr1cl 21740 |
. . . . . . . . . . . . 13
β’ ((πΈ βΎs πΉ) β Ring β
(var1β(πΈ
βΎs πΉ))
β π) |
205 | 202, 204 | syl 17 |
. . . . . . . . . . . 12
β’ (π β
(var1β(πΈ
βΎs πΉ))
β π) |
206 | | fveq2 6891 |
. . . . . . . . . . . . . . 15
β’ (π = (var1β(πΈ βΎs πΉ)) β (πβπ) = (πβ(var1β(πΈ βΎs πΉ)))) |
207 | 206 | fveq1d 6893 |
. . . . . . . . . . . . . 14
β’ (π = (var1β(πΈ βΎs πΉ)) β ((πβπ)βπ΄) = ((πβ(var1β(πΈ βΎs πΉ)))βπ΄)) |
208 | 207 | eqeq2d 2743 |
. . . . . . . . . . . . 13
β’ (π = (var1β(πΈ βΎs πΉ)) β (π΄ = ((πβπ)βπ΄) β π΄ = ((πβ(var1β(πΈ βΎs πΉ)))βπ΄))) |
209 | 208 | adantl 482 |
. . . . . . . . . . . 12
β’ ((π β§ π = (var1β(πΈ βΎs πΉ))) β (π΄ = ((πβπ)βπ΄) β π΄ = ((πβ(var1β(πΈ βΎs πΉ)))βπ΄))) |
210 | 91 | fveq2d 6895 |
. . . . . . . . . . . . . . . 16
β’ (π β
(var1β(πΏ
βΎs πΉ)) =
(var1β(πΈ
βΎs πΉ))) |
211 | 210 | fveq2d 6895 |
. . . . . . . . . . . . . . 15
β’ (π β (πβ(var1β(πΏ βΎs πΉ))) = (πβ(var1β(πΈ βΎs πΉ)))) |
212 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(var1β(πΏ βΎs πΉ)) = (var1β(πΏ βΎs πΉ)) |
213 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’ (πΏ βΎs πΉ) = (πΏ βΎs πΉ) |
214 | 15, 212, 213, 17, 31, 41 | evls1var 21856 |
. . . . . . . . . . . . . . 15
β’ (π β (πβ(var1β(πΏ βΎs πΉ))) = ( I βΎ
(BaseβπΏ))) |
215 | 211, 214 | eqtr3d 2774 |
. . . . . . . . . . . . . 14
β’ (π β (πβ(var1β(πΈ βΎs πΉ))) = ( I βΎ
(BaseβπΏ))) |
216 | 215 | fveq1d 6893 |
. . . . . . . . . . . . 13
β’ (π β ((πβ(var1β(πΈ βΎs πΉ)))βπ΄) = (( I βΎ (BaseβπΏ))βπ΄)) |
217 | | fvresi 7170 |
. . . . . . . . . . . . . 14
β’ (π΄ β (BaseβπΏ) β (( I βΎ
(BaseβπΏ))βπ΄) = π΄) |
218 | 49, 217 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β (( I βΎ
(BaseβπΏ))βπ΄) = π΄) |
219 | 216, 218 | eqtr2d 2773 |
. . . . . . . . . . . 12
β’ (π β π΄ = ((πβ(var1β(πΈ βΎs πΉ)))βπ΄)) |
220 | 205, 209,
219 | rspcedvd 3614 |
. . . . . . . . . . 11
β’ (π β βπ β π π΄ = ((πβπ)βπ΄)) |
221 | 50, 220, 25 | elrnmptd 5960 |
. . . . . . . . . 10
β’ (π β π΄ β ran πΊ) |
222 | 221 | snssd 4812 |
. . . . . . . . 9
β’ (π β {π΄} β ran πΊ) |
223 | 118, 222 | unssd 4186 |
. . . . . . . 8
β’ (π β (πΉ βͺ {π΄}) β ran πΊ) |
224 | 6, 32, 201, 223 | fldgenssp 32403 |
. . . . . . 7
β’ (π β (πΈ fldGen (πΉ βͺ {π΄})) β ran πΊ) |
225 | 64, 224 | eqssd 3999 |
. . . . . 6
β’ (π β ran πΊ = (πΈ fldGen (πΉ βͺ {π΄}))) |
226 | | eqidd 2733 |
. . . . . . 7
β’ (π β ((subringAlg βπΏ)βπΉ) = ((subringAlg βπΏ)βπΉ)) |
227 | 38, 45 | sseqtrd 4022 |
. . . . . . 7
β’ (π β πΉ β (BaseβπΏ)) |
228 | 226, 227 | srabase 20791 |
. . . . . 6
β’ (π β (BaseβπΏ) = (Baseβ((subringAlg
βπΏ)βπΉ))) |
229 | 225, 45, 228 | 3eqtrd 2776 |
. . . . 5
β’ (π β ran πΊ = (Baseβ((subringAlg βπΏ)βπΉ))) |
230 | | imaeq2 6055 |
. . . . . . 7
β’ (π = π β (πΊ β π) = (πΊ β π)) |
231 | 230 | unieqd 4922 |
. . . . . 6
β’ (π = π β βͺ (πΊ β π) = βͺ (πΊ β π)) |
232 | 231 | cbvmptv 5261 |
. . . . 5
β’ (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π)) = (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π)) |
233 | 14, 52, 53, 54, 229, 232 | lmhmqusker 32529 |
. . . 4
β’ (π β (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π)) β ((π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) LMIso ((subringAlg
βπΏ)βπΉ))) |
234 | | eqidd 2733 |
. . . . . . . . . . . . . 14
β’ (π β (0gβπΏ) = (0gβπΏ)) |
235 | 226, 234,
227 | sralmod0 20809 |
. . . . . . . . . . . . 13
β’ (π β (0gβπΏ) =
(0gβ((subringAlg βπΏ)βπΉ))) |
236 | 235 | sneqd 4640 |
. . . . . . . . . . . 12
β’ (π β
{(0gβπΏ)} =
{(0gβ((subringAlg βπΏ)βπΉ))}) |
237 | 236 | imaeq2d 6059 |
. . . . . . . . . . 11
β’ (π β (β‘πΊ β {(0gβπΏ)}) = (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})) |
238 | 79, 237 | eqtrid 2784 |
. . . . . . . . . 10
β’ (π β π = (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})) |
239 | 238 | oveq2d 7424 |
. . . . . . . . 9
β’ (π β (π ~QG π) = (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) |
240 | 239 | oveq2d 7424 |
. . . . . . . 8
β’ (π β (π /s (π ~QG π)) = (π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) |
241 | 80, 240 | eqtrid 2784 |
. . . . . . 7
β’ (π β π = (π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) |
242 | 241 | fveq2d 6895 |
. . . . . 6
β’ (π β (Baseβπ) = (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))))) |
243 | 242 | mpteq1d 5243 |
. . . . 5
β’ (π β (π β (Baseβπ) β¦ βͺ
(πΊ β π)) = (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π))) |
244 | 243, 81, 232 | 3eqtr4g 2797 |
. . . 4
β’ (π β π½ = (π β (Baseβ(π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))})))) β¦ βͺ (πΊ
β π))) |
245 | 241 | oveq1d 7423 |
. . . 4
β’ (π β (π LMIso ((subringAlg βπΏ)βπΉ)) = ((π /s (π ~QG (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}))) LMIso ((subringAlg
βπΏ)βπΉ))) |
246 | 233, 244,
245 | 3eltr4d 2848 |
. . 3
β’ (π β π½ β (π LMIso ((subringAlg βπΏ)βπΉ))) |
247 | | eqid 2732 |
. . . . . . 7
β’
(LSubSpβπ) =
(LSubSpβπ) |
248 | 53, 14, 247 | lmhmkerlss 20661 |
. . . . . 6
β’ (πΊ β (π LMHom ((subringAlg βπΏ)βπΉ)) β (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}) β (LSubSpβπ)) |
249 | 52, 248 | syl 17 |
. . . . 5
β’ (π β (β‘πΊ β {(0gβ((subringAlg
βπΏ)βπΉ))}) β (LSubSpβπ)) |
250 | 238, 249 | eqeltrd 2833 |
. . . 4
β’ (π β π β (LSubSpβπ)) |
251 | 80, 94, 250 | quslvec 32466 |
. . 3
β’ (π β π β LVec) |
252 | 246, 251 | lmimdim 32684 |
. 2
β’ (π β (dimβπ) = (dimβ((subringAlg
βπΏ)βπΉ))) |
253 | 90, 88, 9 | 3eqtr4g 2797 |
. . . . 5
β’ (π β (πΏ βΎs πΉ) = πΎ) |
254 | 11 | oveq2d 7424 |
. . . . 5
β’ (π β (πΏ βΎs πΉ) = (πΏ βΎs (BaseβπΎ))) |
255 | 253, 254 | eqtr3d 2774 |
. . . 4
β’ (π β πΎ = (πΏ βΎs (BaseβπΎ))) |
256 | 11, 41 | eqeltrrd 2834 |
. . . 4
β’ (π β (BaseβπΎ) β (SubRingβπΏ)) |
257 | | brfldext 32721 |
. . . . 5
β’ ((πΏ β Field β§ πΎ β Field) β (πΏ/FldExtπΎ β (πΎ = (πΏ βΎs (BaseβπΎ)) β§ (BaseβπΎ) β (SubRingβπΏ)))) |
258 | 257 | biimpar 478 |
. . . 4
β’ (((πΏ β Field β§ πΎ β Field) β§ (πΎ = (πΏ βΎs (BaseβπΎ)) β§ (BaseβπΎ) β (SubRingβπΏ))) β πΏ/FldExtπΎ) |
259 | 30, 179, 255, 256, 258 | syl22anc 837 |
. . 3
β’ (π β πΏ/FldExtπΎ) |
260 | | extdgval 32728 |
. . 3
β’ (πΏ/FldExtπΎ β (πΏ[:]πΎ) = (dimβ((subringAlg βπΏ)β(BaseβπΎ)))) |
261 | 259, 260 | syl 17 |
. 2
β’ (π β (πΏ[:]πΎ) = (dimβ((subringAlg βπΏ)β(BaseβπΎ)))) |
262 | 13, 252, 261 | 3eqtr4d 2782 |
1
β’ (π β (dimβπ) = (πΏ[:]πΎ)) |