Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsnzr Structured version   Visualization version   GIF version

Theorem qsnzr 33419
Description: A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
qsnzr.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qsnzr.1 𝐵 = (Base‘𝑅)
qsnzr.r (𝜑𝑅 ∈ Ring)
qsnzr.z (𝜑𝑅 ∈ NzRing)
qsnzr.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
qsnzr.2 (𝜑𝐼𝐵)
Assertion
Ref Expression
qsnzr (𝜑𝑄 ∈ NzRing)

Proof of Theorem qsnzr
StepHypRef Expression
1 qsnzr.r . . 3 (𝜑𝑅 ∈ Ring)
2 qsnzr.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 qsnzr.q . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
4 eqid 2729 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
53, 4qusring 21217 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
61, 2, 5syl2anc 584 . 2 (𝜑𝑄 ∈ Ring)
7 ringgrp 20158 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
9 eqid 2729 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
108, 9grpinvid 18913 . . . . . . . . . 10 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
111, 7, 103syl 18 . . . . . . . . 9 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
1211oveq1d 7384 . . . . . . . 8 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = ((0g𝑅)(+g𝑅)(1r𝑅)))
13 qsnzr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
14 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
151, 7syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
16 eqid 2729 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
1713, 16ringidcl 20185 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝐵)
1913, 14, 8, 15, 18grplidd 18883 . . . . . . . 8 (𝜑 → ((0g𝑅)(+g𝑅)(1r𝑅)) = (1r𝑅))
2012, 19eqtrd 2764 . . . . . . 7 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = (1r𝑅))
2122idllidld 21196 . . . . . . . 8 (𝜑𝐼 ∈ (LIdeal‘𝑅))
22 qsnzr.2 . . . . . . . 8 (𝜑𝐼𝐵)
2313, 16pridln1 33407 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ¬ (1r𝑅) ∈ 𝐼)
241, 21, 22, 23syl3anc 1373 . . . . . . 7 (𝜑 → ¬ (1r𝑅) ∈ 𝐼)
2520, 24eqneltrd 2848 . . . . . 6 (𝜑 → ¬ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
261adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝑅 ∈ Ring)
27 lidlnsg 21190 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
281, 21, 27syl2anc 584 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
29 nsgsubg 19072 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
3028, 29syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
3113subgss 19041 . . . . . . . . 9 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
3230, 31syl 17 . . . . . . . 8 (𝜑𝐼𝐵)
3332adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝐼𝐵)
34 eqid 2729 . . . . . . . . . . 11 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
3513, 34eqger 19092 . . . . . . . . . 10 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
3630, 35syl 17 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (𝑅 ~QG 𝐼) Er 𝐵)
38 simpr 484 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
3937, 38ersym 8660 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅))
4013, 9, 14, 34eqgval 19091 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝐵) → ((0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅) ↔ ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)))
4140biimpa 476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼))
4241simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4326, 33, 39, 42syl21anc 837 . . . . . 6 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4425, 43mtand 815 . . . . 5 (𝜑 → ¬ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
4536, 18erth 8702 . . . . 5 (𝜑 → ((1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅) ↔ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼)))
4644, 45mtbid 324 . . . 4 (𝜑 → ¬ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼))
4746neqned 2932 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) ≠ [(0g𝑅)](𝑅 ~QG 𝐼))
483, 4, 16qus1 21216 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
491, 2, 48syl2anc 584 . . . 4 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
5049simprd 495 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄))
513, 8qus0 19103 . . . 4 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5228, 51syl 17 . . 3 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5347, 50, 523netr3d 3001 . 2 (𝜑 → (1r𝑄) ≠ (0g𝑄))
54 eqid 2729 . . 3 (1r𝑄) = (1r𝑄)
55 eqid 2729 . . 3 (0g𝑄) = (0g𝑄)
5654, 55isnzr 20434 . 2 (𝑄 ∈ NzRing ↔ (𝑄 ∈ Ring ∧ (1r𝑄) ≠ (0g𝑄)))
576, 53, 56sylanbrc 583 1 (𝜑𝑄 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369   Er wer 8645  [cec 8646  Basecbs 17155  +gcplusg 17196  0gc0g 17378   /s cqus 17444  Grpcgrp 18847  invgcminusg 18848  SubGrpcsubg 19034  NrmSGrpcnsg 19035   ~QG cqg 19036  1rcur 20101  Ringcrg 20153  NzRingcnzr 20432  LIdealclidl 21148  2Idealc2idl 21191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-nsg 19038  df-eqg 19039  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-nzr 20433  df-subrg 20490  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-2idl 21192
This theorem is referenced by:  qsdrngi  33459
  Copyright terms: Public domain W3C validator