Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsnzr Structured version   Visualization version   GIF version

Theorem qsnzr 33426
Description: A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
qsnzr.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qsnzr.1 𝐵 = (Base‘𝑅)
qsnzr.r (𝜑𝑅 ∈ Ring)
qsnzr.z (𝜑𝑅 ∈ NzRing)
qsnzr.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
qsnzr.2 (𝜑𝐼𝐵)
Assertion
Ref Expression
qsnzr (𝜑𝑄 ∈ NzRing)

Proof of Theorem qsnzr
StepHypRef Expression
1 qsnzr.r . . 3 (𝜑𝑅 ∈ Ring)
2 qsnzr.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 qsnzr.q . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
4 eqid 2729 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
53, 4qusring 21185 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
61, 2, 5syl2anc 584 . 2 (𝜑𝑄 ∈ Ring)
7 ringgrp 20147 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
9 eqid 2729 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
108, 9grpinvid 18931 . . . . . . . . . 10 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
111, 7, 103syl 18 . . . . . . . . 9 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
1211oveq1d 7402 . . . . . . . 8 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = ((0g𝑅)(+g𝑅)(1r𝑅)))
13 qsnzr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
14 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
151, 7syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
16 eqid 2729 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
1713, 16ringidcl 20174 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝐵)
1913, 14, 8, 15, 18grplidd 18901 . . . . . . . 8 (𝜑 → ((0g𝑅)(+g𝑅)(1r𝑅)) = (1r𝑅))
2012, 19eqtrd 2764 . . . . . . 7 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = (1r𝑅))
2122idllidld 21164 . . . . . . . 8 (𝜑𝐼 ∈ (LIdeal‘𝑅))
22 qsnzr.2 . . . . . . . 8 (𝜑𝐼𝐵)
2313, 16pridln1 33414 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ¬ (1r𝑅) ∈ 𝐼)
241, 21, 22, 23syl3anc 1373 . . . . . . 7 (𝜑 → ¬ (1r𝑅) ∈ 𝐼)
2520, 24eqneltrd 2848 . . . . . 6 (𝜑 → ¬ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
261adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝑅 ∈ Ring)
27 lidlnsg 21158 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
281, 21, 27syl2anc 584 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
29 nsgsubg 19090 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
3028, 29syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
3113subgss 19059 . . . . . . . . 9 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
3230, 31syl 17 . . . . . . . 8 (𝜑𝐼𝐵)
3332adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝐼𝐵)
34 eqid 2729 . . . . . . . . . . 11 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
3513, 34eqger 19110 . . . . . . . . . 10 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
3630, 35syl 17 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (𝑅 ~QG 𝐼) Er 𝐵)
38 simpr 484 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
3937, 38ersym 8683 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅))
4013, 9, 14, 34eqgval 19109 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝐵) → ((0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅) ↔ ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)))
4140biimpa 476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼))
4241simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4326, 33, 39, 42syl21anc 837 . . . . . 6 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4425, 43mtand 815 . . . . 5 (𝜑 → ¬ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
4536, 18erth 8725 . . . . 5 (𝜑 → ((1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅) ↔ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼)))
4644, 45mtbid 324 . . . 4 (𝜑 → ¬ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼))
4746neqned 2932 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) ≠ [(0g𝑅)](𝑅 ~QG 𝐼))
483, 4, 16qus1 21184 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
491, 2, 48syl2anc 584 . . . 4 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
5049simprd 495 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄))
513, 8qus0 19121 . . . 4 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5228, 51syl 17 . . 3 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5347, 50, 523netr3d 3001 . 2 (𝜑 → (1r𝑄) ≠ (0g𝑄))
54 eqid 2729 . . 3 (1r𝑄) = (1r𝑄)
55 eqid 2729 . . 3 (0g𝑄) = (0g𝑄)
5654, 55isnzr 20423 . 2 (𝑄 ∈ NzRing ↔ (𝑄 ∈ Ring ∧ (1r𝑄) ≠ (0g𝑄)))
576, 53, 56sylanbrc 583 1 (𝜑𝑄 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387   Er wer 8668  [cec 8669  Basecbs 17179  +gcplusg 17220  0gc0g 17402   /s cqus 17468  Grpcgrp 18865  invgcminusg 18866  SubGrpcsubg 19052  NrmSGrpcnsg 19053   ~QG cqg 19054  1rcur 20090  Ringcrg 20142  NzRingcnzr 20421  LIdealclidl 21116  2Idealc2idl 21159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-nzr 20422  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-2idl 21160
This theorem is referenced by:  qsdrngi  33466
  Copyright terms: Public domain W3C validator