Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsnzr Structured version   Visualization version   GIF version

Theorem qsnzr 33448
Description: A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
qsnzr.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qsnzr.1 𝐵 = (Base‘𝑅)
qsnzr.r (𝜑𝑅 ∈ Ring)
qsnzr.z (𝜑𝑅 ∈ NzRing)
qsnzr.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
qsnzr.2 (𝜑𝐼𝐵)
Assertion
Ref Expression
qsnzr (𝜑𝑄 ∈ NzRing)

Proof of Theorem qsnzr
StepHypRef Expression
1 qsnzr.r . . 3 (𝜑𝑅 ∈ Ring)
2 qsnzr.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 qsnzr.q . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
4 eqid 2740 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
53, 4qusring 21308 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
61, 2, 5syl2anc 583 . 2 (𝜑𝑄 ∈ Ring)
7 ringgrp 20265 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8 eqid 2740 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
9 eqid 2740 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
108, 9grpinvid 19039 . . . . . . . . . 10 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
111, 7, 103syl 18 . . . . . . . . 9 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
1211oveq1d 7463 . . . . . . . 8 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = ((0g𝑅)(+g𝑅)(1r𝑅)))
13 qsnzr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
14 eqid 2740 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
151, 7syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
16 eqid 2740 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
1713, 16ringidcl 20289 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝐵)
1913, 14, 8, 15, 18grplidd 19009 . . . . . . . 8 (𝜑 → ((0g𝑅)(+g𝑅)(1r𝑅)) = (1r𝑅))
2012, 19eqtrd 2780 . . . . . . 7 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = (1r𝑅))
2122idllidld 21287 . . . . . . . 8 (𝜑𝐼 ∈ (LIdeal‘𝑅))
22 qsnzr.2 . . . . . . . 8 (𝜑𝐼𝐵)
2313, 16pridln1 33436 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ¬ (1r𝑅) ∈ 𝐼)
241, 21, 22, 23syl3anc 1371 . . . . . . 7 (𝜑 → ¬ (1r𝑅) ∈ 𝐼)
2520, 24eqneltrd 2864 . . . . . 6 (𝜑 → ¬ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
261adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝑅 ∈ Ring)
27 lidlnsg 21281 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
281, 21, 27syl2anc 583 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
29 nsgsubg 19198 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
3028, 29syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
3113subgss 19167 . . . . . . . . 9 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
3230, 31syl 17 . . . . . . . 8 (𝜑𝐼𝐵)
3332adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝐼𝐵)
34 eqid 2740 . . . . . . . . . . 11 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
3513, 34eqger 19218 . . . . . . . . . 10 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
3630, 35syl 17 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (𝑅 ~QG 𝐼) Er 𝐵)
38 simpr 484 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
3937, 38ersym 8775 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅))
4013, 9, 14, 34eqgval 19217 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝐵) → ((0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅) ↔ ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)))
4140biimpa 476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼))
4241simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4326, 33, 39, 42syl21anc 837 . . . . . 6 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4425, 43mtand 815 . . . . 5 (𝜑 → ¬ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
4536, 18erth 8814 . . . . 5 (𝜑 → ((1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅) ↔ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼)))
4644, 45mtbid 324 . . . 4 (𝜑 → ¬ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼))
4746neqned 2953 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) ≠ [(0g𝑅)](𝑅 ~QG 𝐼))
483, 4, 16qus1 21307 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
491, 2, 48syl2anc 583 . . . 4 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
5049simprd 495 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄))
513, 8qus0 19229 . . . 4 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5228, 51syl 17 . . 3 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5347, 50, 523netr3d 3023 . 2 (𝜑 → (1r𝑄) ≠ (0g𝑄))
54 eqid 2740 . . 3 (1r𝑄) = (1r𝑄)
55 eqid 2740 . . 3 (0g𝑄) = (0g𝑄)
5654, 55isnzr 20540 . 2 (𝑄 ∈ NzRing ↔ (𝑄 ∈ Ring ∧ (1r𝑄) ≠ (0g𝑄)))
576, 53, 56sylanbrc 582 1 (𝜑𝑄 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761  Basecbs 17258  +gcplusg 17311  0gc0g 17499   /s cqus 17565  Grpcgrp 18973  invgcminusg 18974  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162  1rcur 20208  Ringcrg 20260  NzRingcnzr 20538  LIdealclidl 21239  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-nzr 20539  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-2idl 21283
This theorem is referenced by:  qsdrngi  33488
  Copyright terms: Public domain W3C validator