Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsnzr Structured version   Visualization version   GIF version

Theorem qsnzr 33463
Description: A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
qsnzr.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qsnzr.1 𝐵 = (Base‘𝑅)
qsnzr.r (𝜑𝑅 ∈ Ring)
qsnzr.z (𝜑𝑅 ∈ NzRing)
qsnzr.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
qsnzr.2 (𝜑𝐼𝐵)
Assertion
Ref Expression
qsnzr (𝜑𝑄 ∈ NzRing)

Proof of Theorem qsnzr
StepHypRef Expression
1 qsnzr.r . . 3 (𝜑𝑅 ∈ Ring)
2 qsnzr.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 qsnzr.q . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
4 eqid 2735 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
53, 4qusring 21303 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
61, 2, 5syl2anc 584 . 2 (𝜑𝑄 ∈ Ring)
7 ringgrp 20256 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8 eqid 2735 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
9 eqid 2735 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
108, 9grpinvid 19030 . . . . . . . . . 10 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
111, 7, 103syl 18 . . . . . . . . 9 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
1211oveq1d 7446 . . . . . . . 8 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = ((0g𝑅)(+g𝑅)(1r𝑅)))
13 qsnzr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
14 eqid 2735 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
151, 7syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
16 eqid 2735 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
1713, 16ringidcl 20280 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝐵)
1913, 14, 8, 15, 18grplidd 19000 . . . . . . . 8 (𝜑 → ((0g𝑅)(+g𝑅)(1r𝑅)) = (1r𝑅))
2012, 19eqtrd 2775 . . . . . . 7 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = (1r𝑅))
2122idllidld 21282 . . . . . . . 8 (𝜑𝐼 ∈ (LIdeal‘𝑅))
22 qsnzr.2 . . . . . . . 8 (𝜑𝐼𝐵)
2313, 16pridln1 33451 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ¬ (1r𝑅) ∈ 𝐼)
241, 21, 22, 23syl3anc 1370 . . . . . . 7 (𝜑 → ¬ (1r𝑅) ∈ 𝐼)
2520, 24eqneltrd 2859 . . . . . 6 (𝜑 → ¬ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
261adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝑅 ∈ Ring)
27 lidlnsg 21276 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
281, 21, 27syl2anc 584 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
29 nsgsubg 19189 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
3028, 29syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
3113subgss 19158 . . . . . . . . 9 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
3230, 31syl 17 . . . . . . . 8 (𝜑𝐼𝐵)
3332adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝐼𝐵)
34 eqid 2735 . . . . . . . . . . 11 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
3513, 34eqger 19209 . . . . . . . . . 10 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
3630, 35syl 17 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (𝑅 ~QG 𝐼) Er 𝐵)
38 simpr 484 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
3937, 38ersym 8756 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅))
4013, 9, 14, 34eqgval 19208 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝐵) → ((0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅) ↔ ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)))
4140biimpa 476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼))
4241simp3d 1143 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4326, 33, 39, 42syl21anc 838 . . . . . 6 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4425, 43mtand 816 . . . . 5 (𝜑 → ¬ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
4536, 18erth 8795 . . . . 5 (𝜑 → ((1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅) ↔ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼)))
4644, 45mtbid 324 . . . 4 (𝜑 → ¬ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼))
4746neqned 2945 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) ≠ [(0g𝑅)](𝑅 ~QG 𝐼))
483, 4, 16qus1 21302 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
491, 2, 48syl2anc 584 . . . 4 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
5049simprd 495 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄))
513, 8qus0 19220 . . . 4 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5228, 51syl 17 . . 3 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5347, 50, 523netr3d 3015 . 2 (𝜑 → (1r𝑄) ≠ (0g𝑄))
54 eqid 2735 . . 3 (1r𝑄) = (1r𝑄)
55 eqid 2735 . . 3 (0g𝑄) = (0g𝑄)
5654, 55isnzr 20531 . 2 (𝑄 ∈ NzRing ↔ (𝑄 ∈ Ring ∧ (1r𝑄) ≠ (0g𝑄)))
576, 53, 56sylanbrc 583 1 (𝜑𝑄 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431   Er wer 8741  [cec 8742  Basecbs 17245  +gcplusg 17298  0gc0g 17486   /s cqus 17552  Grpcgrp 18964  invgcminusg 18965  SubGrpcsubg 19151  NrmSGrpcnsg 19152   ~QG cqg 19153  1rcur 20199  Ringcrg 20251  NzRingcnzr 20529  LIdealclidl 21234  2Idealc2idl 21277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-nsg 19155  df-eqg 19156  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-nzr 20530  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-2idl 21278
This theorem is referenced by:  qsdrngi  33503
  Copyright terms: Public domain W3C validator