Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsnzr Structured version   Visualization version   GIF version

Theorem qsnzr 33393
Description: A quotient of a non-zero ring by a proper ideal is a non-zero ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
qsnzr.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
qsnzr.1 𝐵 = (Base‘𝑅)
qsnzr.r (𝜑𝑅 ∈ Ring)
qsnzr.z (𝜑𝑅 ∈ NzRing)
qsnzr.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
qsnzr.2 (𝜑𝐼𝐵)
Assertion
Ref Expression
qsnzr (𝜑𝑄 ∈ NzRing)

Proof of Theorem qsnzr
StepHypRef Expression
1 qsnzr.r . . 3 (𝜑𝑅 ∈ Ring)
2 qsnzr.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 qsnzr.q . . . 4 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
4 eqid 2729 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
53, 4qusring 21182 . . 3 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → 𝑄 ∈ Ring)
61, 2, 5syl2anc 584 . 2 (𝜑𝑄 ∈ Ring)
7 ringgrp 20123 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
9 eqid 2729 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
108, 9grpinvid 18878 . . . . . . . . . 10 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
111, 7, 103syl 18 . . . . . . . . 9 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
1211oveq1d 7364 . . . . . . . 8 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = ((0g𝑅)(+g𝑅)(1r𝑅)))
13 qsnzr.1 . . . . . . . . 9 𝐵 = (Base‘𝑅)
14 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
151, 7syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
16 eqid 2729 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
1713, 16ringidcl 20150 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
181, 17syl 17 . . . . . . . . 9 (𝜑 → (1r𝑅) ∈ 𝐵)
1913, 14, 8, 15, 18grplidd 18848 . . . . . . . 8 (𝜑 → ((0g𝑅)(+g𝑅)(1r𝑅)) = (1r𝑅))
2012, 19eqtrd 2764 . . . . . . 7 (𝜑 → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) = (1r𝑅))
2122idllidld 21161 . . . . . . . 8 (𝜑𝐼 ∈ (LIdeal‘𝑅))
22 qsnzr.2 . . . . . . . 8 (𝜑𝐼𝐵)
2313, 16pridln1 33381 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼𝐵) → ¬ (1r𝑅) ∈ 𝐼)
241, 21, 22, 23syl3anc 1373 . . . . . . 7 (𝜑 → ¬ (1r𝑅) ∈ 𝐼)
2520, 24eqneltrd 2848 . . . . . 6 (𝜑 → ¬ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
261adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝑅 ∈ Ring)
27 lidlnsg 21155 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (LIdeal‘𝑅)) → 𝐼 ∈ (NrmSGrp‘𝑅))
281, 21, 27syl2anc 584 . . . . . . . . . 10 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
29 nsgsubg 19037 . . . . . . . . . 10 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
3028, 29syl 17 . . . . . . . . 9 (𝜑𝐼 ∈ (SubGrp‘𝑅))
3113subgss 19006 . . . . . . . . 9 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
3230, 31syl 17 . . . . . . . 8 (𝜑𝐼𝐵)
3332adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → 𝐼𝐵)
34 eqid 2729 . . . . . . . . . . 11 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
3513, 34eqger 19057 . . . . . . . . . 10 (𝐼 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝐼) Er 𝐵)
3630, 35syl 17 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) Er 𝐵)
3736adantr 480 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (𝑅 ~QG 𝐼) Er 𝐵)
38 simpr 484 . . . . . . . 8 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
3937, 38ersym 8637 . . . . . . 7 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅))
4013, 9, 14, 34eqgval 19056 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝐵) → ((0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅) ↔ ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)))
4140biimpa 476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → ((0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼))
4241simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝐵) ∧ (0g𝑅)(𝑅 ~QG 𝐼)(1r𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4326, 33, 39, 42syl21anc 837 . . . . . 6 ((𝜑 ∧ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅)) → (((invg𝑅)‘(0g𝑅))(+g𝑅)(1r𝑅)) ∈ 𝐼)
4425, 43mtand 815 . . . . 5 (𝜑 → ¬ (1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅))
4536, 18erth 8679 . . . . 5 (𝜑 → ((1r𝑅)(𝑅 ~QG 𝐼)(0g𝑅) ↔ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼)))
4644, 45mtbid 324 . . . 4 (𝜑 → ¬ [(1r𝑅)](𝑅 ~QG 𝐼) = [(0g𝑅)](𝑅 ~QG 𝐼))
4746neqned 2932 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) ≠ [(0g𝑅)](𝑅 ~QG 𝐼))
483, 4, 16qus1 21181 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
491, 2, 48syl2anc 584 . . . 4 (𝜑 → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄)))
5049simprd 495 . . 3 (𝜑 → [(1r𝑅)](𝑅 ~QG 𝐼) = (1r𝑄))
513, 8qus0 19068 . . . 4 (𝐼 ∈ (NrmSGrp‘𝑅) → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5228, 51syl 17 . . 3 (𝜑 → [(0g𝑅)](𝑅 ~QG 𝐼) = (0g𝑄))
5347, 50, 523netr3d 3001 . 2 (𝜑 → (1r𝑄) ≠ (0g𝑄))
54 eqid 2729 . . 3 (1r𝑄) = (1r𝑄)
55 eqid 2729 . . 3 (0g𝑄) = (0g𝑄)
5654, 55isnzr 20399 . 2 (𝑄 ∈ NzRing ↔ (𝑄 ∈ Ring ∧ (1r𝑄) ≠ (0g𝑄)))
576, 53, 56sylanbrc 583 1 (𝜑𝑄 ∈ NzRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349   Er wer 8622  [cec 8623  Basecbs 17120  +gcplusg 17161  0gc0g 17343   /s cqus 17409  Grpcgrp 18812  invgcminusg 18813  SubGrpcsubg 18999  NrmSGrpcnsg 19000   ~QG cqg 19001  1rcur 20066  Ringcrg 20118  NzRingcnzr 20397  LIdealclidl 21113  2Idealc2idl 21156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-qs 8631  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-nsg 19003  df-eqg 19004  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-nzr 20398  df-subrg 20455  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-2idl 21157
This theorem is referenced by:  qsdrngi  33433
  Copyright terms: Public domain W3C validator