![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem9 | Structured version Visualization version GIF version |
Description: Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 1-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem8.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem8.q | ⊢ + = (+g‘𝑈) |
hdmap14lem8.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem8.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem8.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap14lem8.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem8.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem8.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem8.d | ⊢ ✚ = (+g‘𝐶) |
hdmap14lem8.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem8.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem8.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem8.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem8.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem8.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
hdmap14lem8.i | ⊢ (𝜑 → 𝐼 ∈ 𝐴) |
hdmap14lem8.xx | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
hdmap14lem8.yy | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
hdmap14lem8.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
hdmap14lem8.j | ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
hdmap14lem8.xy | ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) |
Ref | Expression |
---|---|
hdmap14lem9 | ⊢ (𝜑 → 𝐺 = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | hdmap14lem8.d | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
3 | hdmap14lem8.p | . . . 4 ⊢ 𝑃 = (Scalar‘𝐶) | |
4 | hdmap14lem8.a | . . . 4 ⊢ 𝐴 = (Base‘𝑃) | |
5 | hdmap14lem8.e | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
6 | eqid 2727 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
7 | eqid 2727 | . . . 4 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
8 | hdmap14lem8.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | hdmap14lem8.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
10 | hdmap14lem8.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 8, 9, 10 | lcdlvec 40988 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LVec) |
12 | hdmap14lem8.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
13 | hdmap14lem8.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
14 | hdmap14lem8.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
15 | hdmap14lem8.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
16 | hdmap14lem8.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
17 | 8, 12, 13, 14, 9, 6, 1, 15, 10, 16 | hdmapnzcl 41242 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)})) |
18 | hdmap14lem8.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
19 | 8, 12, 13, 14, 9, 6, 1, 15, 10, 18 | hdmapnzcl 41242 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑌) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)})) |
20 | hdmap14lem8.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐴) | |
21 | hdmap14lem8.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
22 | hdmap14lem8.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐴) | |
23 | hdmap14lem8.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
24 | eqid 2727 | . . . . . . . 8 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
25 | eqid 2727 | . . . . . . . 8 ⊢ ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) | |
26 | 8, 12, 10 | dvhlmod 40507 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
27 | 16 | eldifad 3956 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
28 | hdmap14lem8.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
29 | 13, 24, 28 | lspsncl 20843 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
30 | 26, 27, 29 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
31 | 18 | eldifad 3956 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
32 | 13, 24, 28 | lspsncl 20843 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
33 | 26, 31, 32 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
34 | 8, 12, 24, 25, 10, 30, 33 | mapd11 41036 | . . . . . . 7 ⊢ (𝜑 → ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑋})) = (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑌})) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
35 | 34 | necon3bid 2980 | . . . . . 6 ⊢ (𝜑 → ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑋})) ≠ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑌})) ↔ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))) |
36 | 23, 35 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑋})) ≠ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑌}))) |
37 | 8, 12, 13, 28, 9, 7, 25, 15, 10, 27 | hdmap10 41237 | . . . . 5 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑋})) = ((LSpan‘𝐶)‘{(𝑆‘𝑋)})) |
38 | 8, 12, 13, 28, 9, 7, 25, 15, 10, 31 | hdmap10 41237 | . . . . 5 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑌})) = ((LSpan‘𝐶)‘{(𝑆‘𝑌)})) |
39 | 36, 37, 38 | 3netr3d 3012 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝐶)‘{(𝑆‘𝑋)}) ≠ ((LSpan‘𝐶)‘{(𝑆‘𝑌)})) |
40 | hdmap14lem8.q | . . . . 5 ⊢ + = (+g‘𝑈) | |
41 | hdmap14lem8.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
42 | hdmap14lem8.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
43 | hdmap14lem8.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
44 | hdmap14lem8.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
45 | hdmap14lem8.xx | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
46 | hdmap14lem8.yy | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) | |
47 | hdmap14lem8.xy | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) | |
48 | 8, 12, 13, 40, 41, 14, 28, 42, 43, 9, 2, 5, 3, 4, 15, 10, 16, 18, 44, 21, 22, 45, 46, 23, 20, 47 | hdmap14lem8 41272 | . . . 4 ⊢ (𝜑 → ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
49 | 1, 2, 3, 4, 5, 6, 7, 11, 17, 19, 20, 20, 21, 22, 39, 48 | lvecindp2 21009 | . . 3 ⊢ (𝜑 → (𝐽 = 𝐺 ∧ 𝐽 = 𝐼)) |
50 | 49 | simpld 494 | . 2 ⊢ (𝜑 → 𝐽 = 𝐺) |
51 | 49 | simprd 495 | . 2 ⊢ (𝜑 → 𝐽 = 𝐼) |
52 | 50, 51 | eqtr3d 2769 | 1 ⊢ (𝜑 → 𝐺 = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 ‘cfv 6542 (class class class)co 7414 Basecbs 17165 +gcplusg 17218 Scalarcsca 17221 ·𝑠 cvsca 17222 0gc0g 17406 LModclmod 20725 LSubSpclss 20797 LSpanclspn 20837 HLchlt 38746 LHypclh 39381 DVecHcdvh 40475 LCDualclcd 40983 mapdcmpd 41021 HDMapchdma 41189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-riotaBAD 38349 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-tpos 8223 df-undef 8270 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-sca 17234 df-vsca 17235 df-0g 17408 df-mre 17551 df-mrc 17552 df-acs 17554 df-proset 18272 df-poset 18290 df-plt 18307 df-lub 18323 df-glb 18324 df-join 18325 df-meet 18326 df-p0 18402 df-p1 18403 df-lat 18409 df-clat 18476 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-submnd 18726 df-grp 18878 df-minusg 18879 df-sbg 18880 df-subg 19062 df-cntz 19252 df-oppg 19281 df-lsm 19575 df-cmn 19721 df-abl 19722 df-mgp 20059 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20255 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-dvr 20322 df-drng 20608 df-lmod 20727 df-lss 20798 df-lsp 20838 df-lvec 20970 df-lsatoms 38372 df-lshyp 38373 df-lcv 38415 df-lfl 38454 df-lkr 38482 df-ldual 38520 df-oposet 38572 df-ol 38574 df-oml 38575 df-covers 38662 df-ats 38663 df-atl 38694 df-cvlat 38718 df-hlat 38747 df-llines 38895 df-lplanes 38896 df-lvols 38897 df-lines 38898 df-psubsp 38900 df-pmap 38901 df-padd 39193 df-lhyp 39385 df-laut 39386 df-ldil 39501 df-ltrn 39502 df-trl 39556 df-tgrp 40140 df-tendo 40152 df-edring 40154 df-dveca 40400 df-disoa 40426 df-dvech 40476 df-dib 40536 df-dic 40570 df-dih 40626 df-doch 40745 df-djh 40792 df-lcdual 40984 df-mapd 41022 df-hvmap 41154 df-hdmap1 41190 df-hdmap 41191 |
This theorem is referenced by: hdmap14lem10 41274 |
Copyright terms: Public domain | W3C validator |