| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem9 | Structured version Visualization version GIF version | ||
| Description: Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 1-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmap14lem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap14lem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap14lem8.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap14lem8.q | ⊢ + = (+g‘𝑈) |
| hdmap14lem8.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmap14lem8.o | ⊢ 0 = (0g‘𝑈) |
| hdmap14lem8.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap14lem8.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmap14lem8.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmap14lem8.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap14lem8.d | ⊢ ✚ = (+g‘𝐶) |
| hdmap14lem8.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
| hdmap14lem8.p | ⊢ 𝑃 = (Scalar‘𝐶) |
| hdmap14lem8.a | ⊢ 𝐴 = (Base‘𝑃) |
| hdmap14lem8.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmap14lem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap14lem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem8.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| hdmap14lem8.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
| hdmap14lem8.i | ⊢ (𝜑 → 𝐼 ∈ 𝐴) |
| hdmap14lem8.xx | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
| hdmap14lem8.yy | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
| hdmap14lem8.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| hdmap14lem8.j | ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| hdmap14lem8.xy | ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) |
| Ref | Expression |
|---|---|
| hdmap14lem9 | ⊢ (𝜑 → 𝐺 = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | hdmap14lem8.d | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
| 3 | hdmap14lem8.p | . . . 4 ⊢ 𝑃 = (Scalar‘𝐶) | |
| 4 | hdmap14lem8.a | . . . 4 ⊢ 𝐴 = (Base‘𝑃) | |
| 5 | hdmap14lem8.e | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
| 6 | eqid 2729 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 7 | eqid 2729 | . . . 4 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
| 8 | hdmap14lem8.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | hdmap14lem8.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 10 | hdmap14lem8.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 8, 9, 10 | lcdlvec 41590 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 12 | hdmap14lem8.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 13 | hdmap14lem8.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 14 | hdmap14lem8.o | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
| 15 | hdmap14lem8.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 16 | hdmap14lem8.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 17 | 8, 12, 13, 14, 9, 6, 1, 15, 10, 16 | hdmapnzcl 41844 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)})) |
| 18 | hdmap14lem8.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 19 | 8, 12, 13, 14, 9, 6, 1, 15, 10, 18 | hdmapnzcl 41844 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑌) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)})) |
| 20 | hdmap14lem8.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐴) | |
| 21 | hdmap14lem8.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
| 22 | hdmap14lem8.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐴) | |
| 23 | hdmap14lem8.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 24 | eqid 2729 | . . . . . . . 8 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 25 | eqid 2729 | . . . . . . . 8 ⊢ ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) | |
| 26 | 8, 12, 10 | dvhlmod 41109 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 27 | 16 | eldifad 3917 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 28 | hdmap14lem8.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 29 | 13, 24, 28 | lspsncl 20899 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 30 | 26, 27, 29 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 31 | 18 | eldifad 3917 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 32 | 13, 24, 28 | lspsncl 20899 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 33 | 26, 31, 32 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 34 | 8, 12, 24, 25, 10, 30, 33 | mapd11 41638 | . . . . . . 7 ⊢ (𝜑 → ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑋})) = (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑌})) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 35 | 34 | necon3bid 2969 | . . . . . 6 ⊢ (𝜑 → ((((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑋})) ≠ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑌})) ↔ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))) |
| 36 | 23, 35 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑋})) ≠ (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑌}))) |
| 37 | 8, 12, 13, 28, 9, 7, 25, 15, 10, 27 | hdmap10 41839 | . . . . 5 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑋})) = ((LSpan‘𝐶)‘{(𝑆‘𝑋)})) |
| 38 | 8, 12, 13, 28, 9, 7, 25, 15, 10, 31 | hdmap10 41839 | . . . . 5 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝑌})) = ((LSpan‘𝐶)‘{(𝑆‘𝑌)})) |
| 39 | 36, 37, 38 | 3netr3d 3001 | . . . 4 ⊢ (𝜑 → ((LSpan‘𝐶)‘{(𝑆‘𝑋)}) ≠ ((LSpan‘𝐶)‘{(𝑆‘𝑌)})) |
| 40 | hdmap14lem8.q | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 41 | hdmap14lem8.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 42 | hdmap14lem8.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 43 | hdmap14lem8.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 44 | hdmap14lem8.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 45 | hdmap14lem8.xx | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
| 46 | hdmap14lem8.yy | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) | |
| 47 | hdmap14lem8.xy | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) | |
| 48 | 8, 12, 13, 40, 41, 14, 28, 42, 43, 9, 2, 5, 3, 4, 15, 10, 16, 18, 44, 21, 22, 45, 46, 23, 20, 47 | hdmap14lem8 41874 | . . . 4 ⊢ (𝜑 → ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
| 49 | 1, 2, 3, 4, 5, 6, 7, 11, 17, 19, 20, 20, 21, 22, 39, 48 | lvecindp2 21065 | . . 3 ⊢ (𝜑 → (𝐽 = 𝐺 ∧ 𝐽 = 𝐼)) |
| 50 | 49 | simpld 494 | . 2 ⊢ (𝜑 → 𝐽 = 𝐺) |
| 51 | 49 | simprd 495 | . 2 ⊢ (𝜑 → 𝐽 = 𝐼) |
| 52 | 50, 51 | eqtr3d 2766 | 1 ⊢ (𝜑 → 𝐺 = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3902 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 +gcplusg 17180 Scalarcsca 17183 ·𝑠 cvsca 17184 0gc0g 17362 LModclmod 20782 LSubSpclss 20853 LSpanclspn 20893 HLchlt 39348 LHypclh 39983 DVecHcdvh 41077 LCDualclcd 41585 mapdcmpd 41623 HDMapchdma 41791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38951 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-0g 17364 df-mre 17507 df-mrc 17508 df-acs 17510 df-proset 18219 df-poset 18238 df-plt 18253 df-lub 18269 df-glb 18270 df-join 18271 df-meet 18272 df-p0 18348 df-p1 18349 df-lat 18357 df-clat 18424 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-cntz 19215 df-oppg 19244 df-lsm 19534 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-dvr 20305 df-nzr 20417 df-rlreg 20598 df-domn 20599 df-drng 20635 df-lmod 20784 df-lss 20854 df-lsp 20894 df-lvec 21026 df-lsatoms 38974 df-lshyp 38975 df-lcv 39017 df-lfl 39056 df-lkr 39084 df-ldual 39122 df-oposet 39174 df-ol 39176 df-oml 39177 df-covers 39264 df-ats 39265 df-atl 39296 df-cvlat 39320 df-hlat 39349 df-llines 39497 df-lplanes 39498 df-lvols 39499 df-lines 39500 df-psubsp 39502 df-pmap 39503 df-padd 39795 df-lhyp 39987 df-laut 39988 df-ldil 40103 df-ltrn 40104 df-trl 40158 df-tgrp 40742 df-tendo 40754 df-edring 40756 df-dveca 41002 df-disoa 41028 df-dvech 41078 df-dib 41138 df-dic 41172 df-dih 41228 df-doch 41347 df-djh 41394 df-lcdual 41586 df-mapd 41624 df-hvmap 41756 df-hdmap1 41792 df-hdmap 41793 |
| This theorem is referenced by: hdmap14lem10 41876 |
| Copyright terms: Public domain | W3C validator |