MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abnexg Structured version   Visualization version   GIF version

Theorem abnexg 7695
Description: Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 7898. Note that the second antecedent 𝑥𝐴𝑥𝐹 cannot be translated to 𝐴𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 7697 and pwnex 7698 respectively, proved from abnex 7696, which is a consequence of abnexg 7695 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.)
Assertion
Ref Expression
abnexg (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊𝐴 ∈ V))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐹
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem abnexg
StepHypRef Expression
1 uniexg 7682 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V)
2 simpl 484 . . . . 5 ((𝐹𝑉𝑥𝐹) → 𝐹𝑉)
32ralimi 3087 . . . 4 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ∀𝑥𝐴 𝐹𝑉)
4 dfiun2g 4995 . . . . . 6 (∀𝑥𝐴 𝐹𝑉 𝑥𝐴 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹})
54eleq1d 2823 . . . . 5 (∀𝑥𝐴 𝐹𝑉 → ( 𝑥𝐴 𝐹 ∈ V ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V))
65biimprd 248 . . . 4 (∀𝑥𝐴 𝐹𝑉 → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝑥𝐴 𝐹 ∈ V))
73, 6syl 17 . . 3 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝑥𝐴 𝐹 ∈ V))
8 simpr 486 . . . . 5 ((𝐹𝑉𝑥𝐹) → 𝑥𝐹)
98ralimi 3087 . . . 4 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ∀𝑥𝐴 𝑥𝐹)
10 iunid 5025 . . . . 5 𝑥𝐴 {𝑥} = 𝐴
11 snssi 4773 . . . . . . 7 (𝑥𝐹 → {𝑥} ⊆ 𝐹)
1211ralimi 3087 . . . . . 6 (∀𝑥𝐴 𝑥𝐹 → ∀𝑥𝐴 {𝑥} ⊆ 𝐹)
13 ss2iun 4977 . . . . . 6 (∀𝑥𝐴 {𝑥} ⊆ 𝐹 𝑥𝐴 {𝑥} ⊆ 𝑥𝐴 𝐹)
1412, 13syl 17 . . . . 5 (∀𝑥𝐴 𝑥𝐹 𝑥𝐴 {𝑥} ⊆ 𝑥𝐴 𝐹)
1510, 14eqsstrrid 3998 . . . 4 (∀𝑥𝐴 𝑥𝐹𝐴 𝑥𝐴 𝐹)
16 ssexg 5285 . . . . 5 ((𝐴 𝑥𝐴 𝐹 𝑥𝐴 𝐹 ∈ V) → 𝐴 ∈ V)
1716ex 414 . . . 4 (𝐴 𝑥𝐴 𝐹 → ( 𝑥𝐴 𝐹 ∈ V → 𝐴 ∈ V))
189, 15, 173syl 18 . . 3 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( 𝑥𝐴 𝐹 ∈ V → 𝐴 ∈ V))
197, 18syld 47 . 2 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ( {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ V → 𝐴 ∈ V))
201, 19syl5 34 1 (∀𝑥𝐴 (𝐹𝑉𝑥𝐹) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐹} ∈ 𝑊𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2714  wral 3065  wrex 3074  Vcvv 3448  wss 3915  {csn 4591   cuni 4870   ciun 4959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2708  ax-sep 5261  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-in 3922  df-ss 3932  df-sn 4592  df-uni 4871  df-iun 4961
This theorem is referenced by:  abnex  7696
  Copyright terms: Public domain W3C validator