| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abnexg | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 7964. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 7757 and pwnex 7758 respectively, proved from abnex 7756, which is a consequence of abnexg 7755 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| abnexg | ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7739 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → 𝐹 ∈ 𝑉) | |
| 3 | 2 | ralimi 3074 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉) |
| 4 | dfiun2g 5011 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹}) | |
| 5 | 4 | eleq1d 2820 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V ↔ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V)) |
| 6 | 5 | biimprd 248 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V)) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V)) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
| 9 | 8 | ralimi 3074 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹) |
| 10 | iunid 5041 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 11 | snssi 4789 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → {𝑥} ⊆ 𝐹) | |
| 12 | 11 | ralimi 3074 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∀𝑥 ∈ 𝐴 {𝑥} ⊆ 𝐹) |
| 13 | ss2iun 4991 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 {𝑥} ⊆ 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑥} ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑥} ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) |
| 15 | 10, 14 | eqsstrrid 4003 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) |
| 16 | ssexg 5298 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 ∧ ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V) → 𝐴 ∈ V) | |
| 17 | 16 | ex 412 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V)) |
| 18 | 9, 15, 17 | 3syl 18 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V)) |
| 19 | 7, 18 | syld 47 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → 𝐴 ∈ V)) |
| 20 | 1, 19 | syl5 34 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 {csn 4606 ∪ cuni 4888 ∪ ciun 4972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2708 ax-sep 5271 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-sn 4607 df-uni 4889 df-iun 4974 |
| This theorem is referenced by: abnex 7756 |
| Copyright terms: Public domain | W3C validator |