Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abnexg | Structured version Visualization version GIF version |
Description: Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 7803. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 7608 and pwnex 7609 respectively, proved from abnex 7607, which is a consequence of abnexg 7606 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
Ref | Expression |
---|---|
abnexg | ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7593 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V) | |
2 | simpl 483 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → 𝐹 ∈ 𝑉) | |
3 | 2 | ralimi 3087 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉) |
4 | dfiun2g 4960 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹}) | |
5 | 4 | eleq1d 2823 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V ↔ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V)) |
6 | 5 | biimprd 247 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V)) |
7 | 3, 6 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V)) |
8 | simpr 485 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
9 | 8 | ralimi 3087 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹) |
10 | iunid 4990 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
11 | snssi 4741 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → {𝑥} ⊆ 𝐹) | |
12 | 11 | ralimi 3087 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∀𝑥 ∈ 𝐴 {𝑥} ⊆ 𝐹) |
13 | ss2iun 4942 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 {𝑥} ⊆ 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑥} ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑥} ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) |
15 | 10, 14 | eqsstrrid 3970 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) |
16 | ssexg 5247 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 ∧ ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V) → 𝐴 ∈ V) | |
17 | 16 | ex 413 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V)) |
18 | 9, 15, 17 | 3syl 18 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V)) |
19 | 7, 18 | syld 47 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → 𝐴 ∈ V)) |
20 | 1, 19 | syl5 34 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 {csn 4561 ∪ cuni 4839 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 df-uni 4840 df-iun 4926 |
This theorem is referenced by: abnex 7607 |
Copyright terms: Public domain | W3C validator |