![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abnexg | Structured version Visualization version GIF version |
Description: Sufficient condition for a class abstraction to be a proper class. The class 𝐹 can be thought of as an expression in 𝑥 and the abstraction appearing in the statement as the class of values 𝐹 as 𝑥 varies through 𝐴. Assuming the antecedents, if that class is a set, then so is the "domain" 𝐴. The converse holds without antecedent, see abrexexg 7984. Note that the second antecedent ∀𝑥 ∈ 𝐴𝑥 ∈ 𝐹 cannot be translated to 𝐴 ⊆ 𝐹 since 𝐹 may depend on 𝑥. In applications, one may take 𝐹 = {𝑥} or 𝐹 = 𝒫 𝑥 (see snnex 7777 and pwnex 7778 respectively, proved from abnex 7776, which is a consequence of abnexg 7775 with 𝐴 = V). (Contributed by BJ, 2-Dec-2021.) |
Ref | Expression |
---|---|
abnexg | ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7759 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V) | |
2 | simpl 482 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → 𝐹 ∈ 𝑉) | |
3 | 2 | ralimi 3081 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉) |
4 | dfiun2g 5035 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹}) | |
5 | 4 | eleq1d 2824 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V ↔ ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V)) |
6 | 5 | biimprd 248 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V)) |
7 | 3, 6 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V)) |
8 | simpr 484 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
9 | 8 | ralimi 3081 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹) |
10 | iunid 5065 | . . . . 5 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
11 | snssi 4813 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐹 → {𝑥} ⊆ 𝐹) | |
12 | 11 | ralimi 3081 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∀𝑥 ∈ 𝐴 {𝑥} ⊆ 𝐹) |
13 | ss2iun 5015 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 {𝑥} ⊆ 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑥} ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∪ 𝑥 ∈ 𝐴 {𝑥} ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) |
15 | 10, 14 | eqsstrrid 4045 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹) |
16 | ssexg 5329 | . . . . 5 ⊢ ((𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 ∧ ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V) → 𝐴 ∈ V) | |
17 | 16 | ex 412 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V)) |
18 | 9, 15, 17 | 3syl 18 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V)) |
19 | 7, 18 | syld 47 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → (∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ V → 𝐴 ∈ V)) |
20 | 1, 19 | syl5 34 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐹} ∈ 𝑊 → 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ⊆ wss 3963 {csn 4631 ∪ cuni 4912 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-11 2155 ax-ext 2706 ax-sep 5302 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-sn 4632 df-uni 4913 df-iun 4998 |
This theorem is referenced by: abnex 7776 |
Copyright terms: Public domain | W3C validator |