| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotaexb | Structured version Visualization version GIF version | ||
| Description: The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| aiotaexb | ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intexab 5279 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) | |
| 2 | euabsn2 4673 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 3 | df-aiota 47116 | . . 3 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
| 4 | 3 | eleq1i 2822 | . 2 ⊢ ((℩'𝑥𝜑) ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 {cab 2709 Vcvv 3436 {csn 4571 ∩ cint 4892 ℩'caiota 47114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4279 df-sn 4572 df-int 4893 df-aiota 47116 |
| This theorem is referenced by: aiotavb 47121 iotan0aiotaex 47124 aiotaexaiotaiota 47125 aiota0ndef 47128 |
| Copyright terms: Public domain | W3C validator |