| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotaexb | Structured version Visualization version GIF version | ||
| Description: The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| aiotaexb | ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intexab 5304 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) | |
| 2 | euabsn2 4692 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 3 | df-aiota 47090 | . . 3 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
| 4 | 3 | eleq1i 2820 | . 2 ⊢ ((℩'𝑥𝜑) ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
| 5 | 1, 2, 4 | 3bitr4i 303 | 1 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2562 {cab 2708 Vcvv 3450 {csn 4592 ∩ cint 4913 ℩'caiota 47088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 df-sn 4593 df-int 4914 df-aiota 47090 |
| This theorem is referenced by: aiotavb 47095 iotan0aiotaex 47098 aiotaexaiotaiota 47099 aiota0ndef 47102 |
| Copyright terms: Public domain | W3C validator |