Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaexb Structured version   Visualization version   GIF version

Theorem aiotaexb 47094
Description: The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiotaexb (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)

Proof of Theorem aiotaexb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intexab 5304 . 2 (∃𝑦{𝑥𝜑} = {𝑦} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V)
2 euabsn2 4692 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
3 df-aiota 47090 . . 3 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
43eleq1i 2820 . 2 ((℩'𝑥𝜑) ∈ V ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V)
51, 2, 43bitr4i 303 1 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2562  {cab 2708  Vcvv 3450  {csn 4592   cint 4913  ℩'caiota 47088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593  df-int 4914  df-aiota 47090
This theorem is referenced by:  aiotavb  47095  iotan0aiotaex  47098  aiotaexaiotaiota  47099  aiota0ndef  47102
  Copyright terms: Public domain W3C validator