Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotaexb | Structured version Visualization version GIF version |
Description: The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
aiotaexb | ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexab 5280 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) | |
2 | euabsn2 4672 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
3 | df-aiota 44917 | . . 3 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
4 | 3 | eleq1i 2827 | . 2 ⊢ ((℩'𝑥𝜑) ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
5 | 1, 2, 4 | 3bitr4i 302 | 1 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃!weu 2566 {cab 2713 Vcvv 3441 {csn 4572 ∩ cint 4893 ℩'caiota 44915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4269 df-sn 4573 df-int 4894 df-aiota 44917 |
This theorem is referenced by: aiotavb 44922 iotan0aiotaex 44925 aiotaexaiotaiota 44926 aiota0ndef 44929 |
Copyright terms: Public domain | W3C validator |