Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotaexb | Structured version Visualization version GIF version |
Description: The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
aiotaexb | ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intexab 5258 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) | |
2 | euabsn2 4658 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
3 | df-aiota 44464 | . . 3 ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
4 | 3 | eleq1i 2829 | . 2 ⊢ ((℩'𝑥𝜑) ∈ V ↔ ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} ∈ V) |
5 | 1, 2, 4 | 3bitr4i 302 | 1 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃!weu 2568 {cab 2715 Vcvv 3422 {csn 4558 ∩ cint 4876 ℩'caiota 44462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-int 4877 df-aiota 44464 |
This theorem is referenced by: aiotavb 44469 iotan0aiotaex 44472 aiotaexaiotaiota 44473 aiota0ndef 44476 |
Copyright terms: Public domain | W3C validator |