Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaexb Structured version   Visualization version   GIF version

Theorem aiotaexb 44468
Description: The alternate iota over a wff 𝜑 is a set iff there is a unique value 𝑥 satisfying 𝜑. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiotaexb (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)

Proof of Theorem aiotaexb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 intexab 5258 . 2 (∃𝑦{𝑥𝜑} = {𝑦} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V)
2 euabsn2 4658 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
3 df-aiota 44464 . . 3 (℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
43eleq1i 2829 . 2 ((℩'𝑥𝜑) ∈ V ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ∈ V)
51, 2, 43bitr4i 302 1 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1783  wcel 2108  ∃!weu 2568  {cab 2715  Vcvv 3422  {csn 4558   cint 4876  ℩'caiota 44462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-int 4877  df-aiota 44464
This theorem is referenced by:  aiotavb  44469  iotan0aiotaex  44472  aiotaexaiotaiota  44473  aiota0ndef  44476
  Copyright terms: Public domain W3C validator