Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaexaiotaiota Structured version   Visualization version   GIF version

Theorem aiotaexaiotaiota 47072
Description: The alternate iota over a wff 𝜑 is a set iff the iota and the alternate iota over 𝜑 are equal. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiotaexaiotaiota ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))

Proof of Theorem aiotaexaiotaiota
StepHypRef Expression
1 aiotaexb 47067 . 2 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
2 reuaiotaiota 47066 . 2 (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
31, 2bitr3i 277 1 ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2108  ∃!weu 2568  Vcvv 3481  cio 6520  ℩'caiota 47061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-sn 4635  df-pr 4637  df-uni 4916  df-int 4955  df-iota 6522  df-aiota 47063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator