Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaexaiotaiota Structured version   Visualization version   GIF version

Theorem aiotaexaiotaiota 47064
Description: The alternate iota over a wff 𝜑 is a set iff the iota and the alternate iota over 𝜑 are equal. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiotaexaiotaiota ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))

Proof of Theorem aiotaexaiotaiota
StepHypRef Expression
1 aiotaexb 47059 . 2 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
2 reuaiotaiota 47058 . 2 (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
31, 2bitr3i 277 1 ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  ∃!weu 2566  Vcvv 3463  cio 6492  ℩'caiota 47053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4888  df-int 4927  df-iota 6494  df-aiota 47055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator