Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaexaiotaiota Structured version   Visualization version   GIF version

Theorem aiotaexaiotaiota 44644
Description: The alternate iota over a wff 𝜑 is a set iff the iota and the alternate iota over 𝜑 are equal. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiotaexaiotaiota ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))

Proof of Theorem aiotaexaiotaiota
StepHypRef Expression
1 aiotaexb 44639 . 2 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
2 reuaiotaiota 44638 . 2 (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
31, 2bitr3i 277 1 ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2104  ∃!weu 2566  Vcvv 3437  cio 6408  ℩'caiota 44633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-sn 4566  df-pr 4568  df-uni 4845  df-int 4887  df-iota 6410  df-aiota 44635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator