Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaexaiotaiota Structured version   Visualization version   GIF version

Theorem aiotaexaiotaiota 47011
Description: The alternate iota over a wff 𝜑 is a set iff the iota and the alternate iota over 𝜑 are equal. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
aiotaexaiotaiota ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))

Proof of Theorem aiotaexaiotaiota
StepHypRef Expression
1 aiotaexb 47006 . 2 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
2 reuaiotaiota 47005 . 2 (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
31, 2bitr3i 277 1 ((℩'𝑥𝜑) ∈ V ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  ∃!weu 2571  Vcvv 3488  cio 6525  ℩'caiota 47000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-int 4971  df-iota 6527  df-aiota 47002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator