![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotan0aiotaex | Structured version Visualization version GIF version |
Description: If the iota over a wff 𝜑 is not empty, the alternate iota over 𝜑 is a set. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
iotan0aiotaex | ⊢ ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotanul 6532 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
2 | 1 | necon1ai 2958 | . 2 ⊢ ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑) |
3 | aiotaexb 46702 | . 2 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) | |
4 | 2, 3 | sylib 217 | 1 ⊢ ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ∃!weu 2557 ≠ wne 2930 Vcvv 3462 ∅c0 4325 ℩cio 6504 ℩'caiota 46696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4326 df-sn 4634 df-uni 4914 df-int 4955 df-iota 6506 df-aiota 46698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |