Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotan0aiotaex Structured version   Visualization version   GIF version

Theorem iotan0aiotaex 47067
Description: If the iota over a wff 𝜑 is not empty, the alternate iota over 𝜑 is a set. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
iotan0aiotaex ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V)

Proof of Theorem iotan0aiotaex
StepHypRef Expression
1 iotanul 6477 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
21necon1ai 2952 . 2 ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑)
3 aiotaexb 47063 . 2 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
42, 3sylib 218 1 ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ∃!weu 2561  wne 2925  Vcvv 3444  c0 4292  cio 6450  ℩'caiota 47057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-in 3918  df-ss 3928  df-nul 4293  df-sn 4586  df-uni 4868  df-int 4907  df-iota 6452  df-aiota 47059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator