Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotan0aiotaex | Structured version Visualization version GIF version |
Description: If the iota over a wff 𝜑 is not empty, the alternate iota over 𝜑 is a set. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
iotan0aiotaex | ⊢ ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotanul 6411 | . . 3 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | |
2 | 1 | necon1ai 2971 | . 2 ⊢ ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑) |
3 | aiotaexb 44581 | . 2 ⊢ (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V) | |
4 | 2, 3 | sylib 217 | 1 ⊢ ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃!weu 2568 ≠ wne 2943 Vcvv 3432 ∅c0 4256 ℩cio 6389 ℩'caiota 44575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-uni 4840 df-int 4880 df-iota 6391 df-aiota 44577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |