Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotan0aiotaex Structured version   Visualization version   GIF version

Theorem iotan0aiotaex 46706
Description: If the iota over a wff 𝜑 is not empty, the alternate iota over 𝜑 is a set. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
iotan0aiotaex ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V)

Proof of Theorem iotan0aiotaex
StepHypRef Expression
1 iotanul 6532 . . 3 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
21necon1ai 2958 . 2 ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑)
3 aiotaexb 46702 . 2 (∃!𝑥𝜑 ↔ (℩'𝑥𝜑) ∈ V)
42, 3sylib 217 1 ((℩𝑥𝜑) ≠ ∅ → (℩'𝑥𝜑) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  ∃!weu 2557  wne 2930  Vcvv 3462  c0 4325  cio 6504  ℩'caiota 46696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4326  df-sn 4634  df-uni 4914  df-int 4955  df-iota 6506  df-aiota 46698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator