| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv2 | Structured version Visualization version GIF version | ||
| Description: Alternative definition of (𝐹'''𝐴) using (𝐹‘𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Revised by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| dfafv2 | ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6489 | . . . . 5 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | simprr 772 | . . . . . 6 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ∃!𝑥 𝐴𝐹𝑥) | |
| 3 | reuaiotaiota 47118 | . . . . . 6 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥)) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥)) |
| 5 | 1, 4 | eqtrid 2778 | . . . 4 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (𝐹‘𝐴) = (℩'𝑥𝐴𝐹𝑥)) |
| 6 | eubrdm 47066 | . . . . . . . . 9 ⊢ (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹) | |
| 7 | 6 | ancri 549 | . . . . . . . 8 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) |
| 8 | 7 | con3i 154 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → ¬ ∃!𝑥 𝐴𝐹𝑥) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ¬ ∃!𝑥 𝐴𝐹𝑥) |
| 10 | aiotavb 47120 | . . . . . 6 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (℩'𝑥𝐴𝐹𝑥) = V) | |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩'𝑥𝐴𝐹𝑥) = V) |
| 12 | 11 | eqcomd 2737 | . . . 4 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → V = (℩'𝑥𝐴𝐹𝑥)) |
| 13 | 5, 12 | ifeqda 4512 | . . 3 ⊢ (⊤ → if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) = (℩'𝑥𝐴𝐹𝑥)) |
| 14 | 13 | mptru 1548 | . 2 ⊢ if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) = (℩'𝑥𝐴𝐹𝑥) |
| 15 | dfdfat2 47158 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
| 16 | ifbi 4498 | . . 3 ⊢ ((𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V)) | |
| 17 | 15, 16 | ax-mp 5 | . 2 ⊢ if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) |
| 18 | df-afv 47150 | . 2 ⊢ (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥) | |
| 19 | 14, 17, 18 | 3eqtr4ri 2765 | 1 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 ifcif 4475 class class class wbr 5091 dom cdm 5616 ℩cio 6435 ‘cfv 6481 ℩'caiota 47113 defAt wdfat 47146 '''cafv 47147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47115 df-dfat 47149 df-afv 47150 |
| This theorem is referenced by: afveq12d 47163 nfafv 47166 afvfundmfveq 47168 afvnfundmuv 47169 afvpcfv0 47176 |
| Copyright terms: Public domain | W3C validator |