Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv2 Structured version   Visualization version   GIF version

Theorem dfafv2 44624
Description: Alternative definition of (𝐹'''𝐴) using (𝐹𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Revised by AV, 25-Aug-2022.)
Assertion
Ref Expression
dfafv2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)

Proof of Theorem dfafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fv 6441 . . . . 5 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 simprr 770 . . . . . 6 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ∃!𝑥 𝐴𝐹𝑥)
3 reuaiotaiota 44580 . . . . . 6 (∃!𝑥 𝐴𝐹𝑥 ↔ (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥))
42, 3sylib 217 . . . . 5 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥))
51, 4eqtrid 2790 . . . 4 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (𝐹𝐴) = (℩'𝑥𝐴𝐹𝑥))
6 eubrdm 44530 . . . . . . . . 9 (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ dom 𝐹)
76ancri 550 . . . . . . . 8 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
87con3i 154 . . . . . . 7 (¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → ¬ ∃!𝑥 𝐴𝐹𝑥)
98adantl 482 . . . . . 6 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ¬ ∃!𝑥 𝐴𝐹𝑥)
10 aiotavb 44582 . . . . . 6 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (℩'𝑥𝐴𝐹𝑥) = V)
119, 10sylib 217 . . . . 5 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩'𝑥𝐴𝐹𝑥) = V)
1211eqcomd 2744 . . . 4 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → V = (℩'𝑥𝐴𝐹𝑥))
135, 12ifeqda 4495 . . 3 (⊤ → if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V) = (℩'𝑥𝐴𝐹𝑥))
1413mptru 1546 . 2 if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V) = (℩'𝑥𝐴𝐹𝑥)
15 dfdfat2 44620 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
16 ifbi 4481 . . 3 ((𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V))
1715, 16ax-mp 5 . 2 if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V)
18 df-afv 44612 . 2 (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥)
1914, 17, 183eqtr4ri 2777 1 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wtru 1540  wcel 2106  ∃!weu 2568  Vcvv 3432  ifcif 4459   class class class wbr 5074  dom cdm 5589  cio 6389  cfv 6433  ℩'caiota 44575   defAt wdfat 44608  '''cafv 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612
This theorem is referenced by:  afveq12d  44625  nfafv  44628  afvfundmfveq  44630  afvnfundmuv  44631  afvpcfv0  44638
  Copyright terms: Public domain W3C validator