Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv2 Structured version   Visualization version   GIF version

Theorem dfafv2 44511
Description: Alternative definition of (𝐹'''𝐴) using (𝐹𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Revised by AV, 25-Aug-2022.)
Assertion
Ref Expression
dfafv2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)

Proof of Theorem dfafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fv 6426 . . . . 5 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 simprr 769 . . . . . 6 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ∃!𝑥 𝐴𝐹𝑥)
3 reuaiotaiota 44467 . . . . . 6 (∃!𝑥 𝐴𝐹𝑥 ↔ (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥))
42, 3sylib 217 . . . . 5 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥))
51, 4syl5eq 2791 . . . 4 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (𝐹𝐴) = (℩'𝑥𝐴𝐹𝑥))
6 eubrdm 44417 . . . . . . . . 9 (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ dom 𝐹)
76ancri 549 . . . . . . . 8 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
87con3i 154 . . . . . . 7 (¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → ¬ ∃!𝑥 𝐴𝐹𝑥)
98adantl 481 . . . . . 6 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ¬ ∃!𝑥 𝐴𝐹𝑥)
10 aiotavb 44469 . . . . . 6 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (℩'𝑥𝐴𝐹𝑥) = V)
119, 10sylib 217 . . . . 5 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩'𝑥𝐴𝐹𝑥) = V)
1211eqcomd 2744 . . . 4 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → V = (℩'𝑥𝐴𝐹𝑥))
135, 12ifeqda 4492 . . 3 (⊤ → if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V) = (℩'𝑥𝐴𝐹𝑥))
1413mptru 1546 . 2 if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V) = (℩'𝑥𝐴𝐹𝑥)
15 dfdfat2 44507 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
16 ifbi 4478 . . 3 ((𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V))
1715, 16ax-mp 5 . 2 if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V)
18 df-afv 44499 . 2 (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥)
1914, 17, 183eqtr4ri 2777 1 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1539  wtru 1540  wcel 2108  ∃!weu 2568  Vcvv 3422  ifcif 4456   class class class wbr 5070  dom cdm 5580  cio 6374  cfv 6418  ℩'caiota 44462   defAt wdfat 44495  '''cafv 44496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-aiota 44464  df-dfat 44498  df-afv 44499
This theorem is referenced by:  afveq12d  44512  nfafv  44515  afvfundmfveq  44517  afvnfundmuv  44518  afvpcfv0  44525
  Copyright terms: Public domain W3C validator