Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafv2 Structured version   Visualization version   GIF version

Theorem dfafv2 47082
Description: Alternative definition of (𝐹'''𝐴) using (𝐹𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Revised by AV, 25-Aug-2022.)
Assertion
Ref Expression
dfafv2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)

Proof of Theorem dfafv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fv 6571 . . . . 5 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 simprr 773 . . . . . 6 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ∃!𝑥 𝐴𝐹𝑥)
3 reuaiotaiota 47038 . . . . . 6 (∃!𝑥 𝐴𝐹𝑥 ↔ (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥))
42, 3sylib 218 . . . . 5 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥))
51, 4eqtrid 2787 . . . 4 ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (𝐹𝐴) = (℩'𝑥𝐴𝐹𝑥))
6 eubrdm 46986 . . . . . . . . 9 (∃!𝑥 𝐴𝐹𝑥𝐴 ∈ dom 𝐹)
76ancri 549 . . . . . . . 8 (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
87con3i 154 . . . . . . 7 (¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → ¬ ∃!𝑥 𝐴𝐹𝑥)
98adantl 481 . . . . . 6 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ¬ ∃!𝑥 𝐴𝐹𝑥)
10 aiotavb 47040 . . . . . 6 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (℩'𝑥𝐴𝐹𝑥) = V)
119, 10sylib 218 . . . . 5 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩'𝑥𝐴𝐹𝑥) = V)
1211eqcomd 2741 . . . 4 ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → V = (℩'𝑥𝐴𝐹𝑥))
135, 12ifeqda 4567 . . 3 (⊤ → if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V) = (℩'𝑥𝐴𝐹𝑥))
1413mptru 1544 . 2 if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V) = (℩'𝑥𝐴𝐹𝑥)
15 dfdfat2 47078 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
16 ifbi 4553 . . 3 ((𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V))
1715, 16ax-mp 5 . 2 if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹𝐴), V)
18 df-afv 47070 . 2 (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥)
1914, 17, 183eqtr4ri 2774 1 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2106  ∃!weu 2566  Vcvv 3478  ifcif 4531   class class class wbr 5148  dom cdm 5689  cio 6514  cfv 6563  ℩'caiota 47033   defAt wdfat 47066  '''cafv 47067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-aiota 47035  df-dfat 47069  df-afv 47070
This theorem is referenced by:  afveq12d  47083  nfafv  47086  afvfundmfveq  47088  afvnfundmuv  47089  afvpcfv0  47096
  Copyright terms: Public domain W3C validator