![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv2 | Structured version Visualization version GIF version |
Description: Alternative definition of (𝐹'''𝐴) using (𝐹‘𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Revised by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
dfafv2 | ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6550 | . . . . 5 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | simprr 772 | . . . . . 6 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ∃!𝑥 𝐴𝐹𝑥) | |
3 | reuaiotaiota 46440 | . . . . . 6 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥)) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥)) |
5 | 1, 4 | eqtrid 2779 | . . . 4 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (𝐹‘𝐴) = (℩'𝑥𝐴𝐹𝑥)) |
6 | eubrdm 46390 | . . . . . . . . 9 ⊢ (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹) | |
7 | 6 | ancri 549 | . . . . . . . 8 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) |
8 | 7 | con3i 154 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → ¬ ∃!𝑥 𝐴𝐹𝑥) |
9 | 8 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ¬ ∃!𝑥 𝐴𝐹𝑥) |
10 | aiotavb 46442 | . . . . . 6 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (℩'𝑥𝐴𝐹𝑥) = V) | |
11 | 9, 10 | sylib 217 | . . . . 5 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩'𝑥𝐴𝐹𝑥) = V) |
12 | 11 | eqcomd 2733 | . . . 4 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → V = (℩'𝑥𝐴𝐹𝑥)) |
13 | 5, 12 | ifeqda 4560 | . . 3 ⊢ (⊤ → if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) = (℩'𝑥𝐴𝐹𝑥)) |
14 | 13 | mptru 1541 | . 2 ⊢ if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) = (℩'𝑥𝐴𝐹𝑥) |
15 | dfdfat2 46480 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
16 | ifbi 4546 | . . 3 ⊢ ((𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V)) | |
17 | 15, 16 | ax-mp 5 | . 2 ⊢ if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) |
18 | df-afv 46472 | . 2 ⊢ (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥) | |
19 | 14, 17, 18 | 3eqtr4ri 2766 | 1 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 ∃!weu 2557 Vcvv 3469 ifcif 4524 class class class wbr 5142 dom cdm 5672 ℩cio 6492 ‘cfv 6542 ℩'caiota 46435 defAt wdfat 46468 '''cafv 46469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-aiota 46437 df-dfat 46471 df-afv 46472 |
This theorem is referenced by: afveq12d 46485 nfafv 46488 afvfundmfveq 46490 afvnfundmuv 46491 afvpcfv0 46498 |
Copyright terms: Public domain | W3C validator |