| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafv2 | Structured version Visualization version GIF version | ||
| Description: Alternative definition of (𝐹'''𝐴) using (𝐹‘𝐴) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017.) (Revised by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| dfafv2 | ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6519 | . . . . 5 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
| 2 | simprr 772 | . . . . . 6 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ∃!𝑥 𝐴𝐹𝑥) | |
| 3 | reuaiotaiota 47089 | . . . . . 6 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥)) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩𝑥𝐴𝐹𝑥) = (℩'𝑥𝐴𝐹𝑥)) |
| 5 | 1, 4 | eqtrid 2776 | . . . 4 ⊢ ((⊤ ∧ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (𝐹‘𝐴) = (℩'𝑥𝐴𝐹𝑥)) |
| 6 | eubrdm 47037 | . . . . . . . . 9 ⊢ (∃!𝑥 𝐴𝐹𝑥 → 𝐴 ∈ dom 𝐹) | |
| 7 | 6 | ancri 549 | . . . . . . . 8 ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) |
| 8 | 7 | con3i 154 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → ¬ ∃!𝑥 𝐴𝐹𝑥) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → ¬ ∃!𝑥 𝐴𝐹𝑥) |
| 10 | aiotavb 47091 | . . . . . 6 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (℩'𝑥𝐴𝐹𝑥) = V) | |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → (℩'𝑥𝐴𝐹𝑥) = V) |
| 12 | 11 | eqcomd 2735 | . . . 4 ⊢ ((⊤ ∧ ¬ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → V = (℩'𝑥𝐴𝐹𝑥)) |
| 13 | 5, 12 | ifeqda 4525 | . . 3 ⊢ (⊤ → if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) = (℩'𝑥𝐴𝐹𝑥)) |
| 14 | 13 | mptru 1547 | . 2 ⊢ if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) = (℩'𝑥𝐴𝐹𝑥) |
| 15 | dfdfat2 47129 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
| 16 | ifbi 4511 | . . 3 ⊢ ((𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V)) | |
| 17 | 15, 16 | ax-mp 5 | . 2 ⊢ if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = if((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥), (𝐹‘𝐴), V) |
| 18 | df-afv 47121 | . 2 ⊢ (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥) | |
| 19 | 14, 17, 18 | 3eqtr4ri 2763 | 1 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∃!weu 2561 Vcvv 3447 ifcif 4488 class class class wbr 5107 dom cdm 5638 ℩cio 6462 ‘cfv 6511 ℩'caiota 47084 defAt wdfat 47117 '''cafv 47118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-aiota 47086 df-dfat 47120 df-afv 47121 |
| This theorem is referenced by: afveq12d 47134 nfafv 47137 afvfundmfveq 47139 afvnfundmuv 47140 afvpcfv0 47147 |
| Copyright terms: Public domain | W3C validator |