| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotaint | Structured version Visualization version GIF version | ||
| Description: This is to df-aiota 47090 what iotauni 6489 is to df-iota 6467 (it uses intersection like df-aiota 47090, similar to iotauni 6489 using union like df-iota 6467; we could also prove an analogous result using union here too, in the same way that we have iotaint 6490). (Contributed by BJ, 31-Aug-2024.) |
| Ref | Expression |
|---|---|
| aiotaint | ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuaiotaiota 47093 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = (℩'𝑥𝜑)) |
| 3 | iotaint 6490 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | |
| 4 | 2, 3 | eqtr3d 2767 | 1 ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃!weu 2562 {cab 2708 ∩ cint 4913 ℩cio 6465 ℩'caiota 47088 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-int 4914 df-iota 6467 df-aiota 47090 |
| This theorem is referenced by: dfaiota3 47097 |
| Copyright terms: Public domain | W3C validator |