![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotaint | Structured version Visualization version GIF version |
Description: This is to df-aiota 46092 what iotauni 6518 is to df-iota 6495 (it uses intersection like df-aiota 46092, similar to iotauni 6518 using union like df-iota 6495; we could also prove an analogous result using union here too, in the same way that we have iotaint 6519). (Contributed by BJ, 31-Aug-2024.) |
Ref | Expression |
---|---|
aiotaint | ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuaiotaiota 46095 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = (℩'𝑥𝜑)) |
3 | iotaint 6519 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | |
4 | 2, 3 | eqtr3d 2773 | 1 ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∃!weu 2561 {cab 2708 ∩ cint 4950 ℩cio 6493 ℩'caiota 46090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-pr 4631 df-uni 4909 df-int 4951 df-iota 6495 df-aiota 46092 |
This theorem is referenced by: dfaiota3 46099 |
Copyright terms: Public domain | W3C validator |