Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaint Structured version   Visualization version   GIF version

Theorem aiotaint 47068
Description: This is to df-aiota 47062 what iotauni 6505 is to df-iota 6483 (it uses intersection like df-aiota 47062, similar to iotauni 6505 using union like df-iota 6483; we could also prove an analogous result using union here too, in the same way that we have iotaint 6506). (Contributed by BJ, 31-Aug-2024.)
Assertion
Ref Expression
aiotaint (∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑})

Proof of Theorem aiotaint
StepHypRef Expression
1 reuaiotaiota 47065 . . 3 (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
21biimpi 216 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = (℩'𝑥𝜑))
3 iotaint 6506 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
42, 3eqtr3d 2772 1 (∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ∃!weu 2567  {cab 2713   cint 4922  cio 6481  ℩'caiota 47060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-sn 4602  df-pr 4604  df-uni 4884  df-int 4923  df-iota 6483  df-aiota 47062
This theorem is referenced by:  dfaiota3  47069
  Copyright terms: Public domain W3C validator