Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaint Structured version   Visualization version   GIF version

Theorem aiotaint 47079
Description: This is to df-aiota 47073 what iotauni 6463 is to df-iota 6442 (it uses intersection like df-aiota 47073, similar to iotauni 6463 using union like df-iota 6442; we could also prove an analogous result using union here too, in the same way that we have iotaint 6464). (Contributed by BJ, 31-Aug-2024.)
Assertion
Ref Expression
aiotaint (∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑})

Proof of Theorem aiotaint
StepHypRef Expression
1 reuaiotaiota 47076 . . 3 (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
21biimpi 216 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = (℩'𝑥𝜑))
3 iotaint 6464 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
42, 3eqtr3d 2766 1 (∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ∃!weu 2561  {cab 2707   cint 4899  cio 6440  ℩'caiota 47071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-sn 4580  df-pr 4582  df-uni 4862  df-int 4900  df-iota 6442  df-aiota 47073
This theorem is referenced by:  dfaiota3  47080
  Copyright terms: Public domain W3C validator