Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiotaint Structured version   Visualization version   GIF version

Theorem aiotaint 44923
Description: This is to df-aiota 44917 what iotauni 6448 is to df-iota 6425 (it uses intersection like df-aiota 44917, similar to iotauni 6448 using union like df-iota 6425; we could also prove an analogous result using union here too, in the same way that we have iotaint 6449). (Contributed by BJ, 31-Aug-2024.)
Assertion
Ref Expression
aiotaint (∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑})

Proof of Theorem aiotaint
StepHypRef Expression
1 reuaiotaiota 44920 . . 3 (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑))
21biimpi 215 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = (℩'𝑥𝜑))
3 iotaint 6449 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
42, 3eqtr3d 2778 1 (∃!𝑥𝜑 → (℩'𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ∃!weu 2566  {cab 2713   cint 4893  cio 6423  ℩'caiota 44915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-sn 4573  df-pr 4575  df-uni 4852  df-int 4894  df-iota 6425  df-aiota 44917
This theorem is referenced by:  dfaiota3  44924
  Copyright terms: Public domain W3C validator