Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aiotaint | Structured version Visualization version GIF version |
Description: This is to df-aiota 44917 what iotauni 6448 is to df-iota 6425 (it uses intersection like df-aiota 44917, similar to iotauni 6448 using union like df-iota 6425; we could also prove an analogous result using union here too, in the same way that we have iotaint 6449). (Contributed by BJ, 31-Aug-2024.) |
Ref | Expression |
---|---|
aiotaint | ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuaiotaiota 44920 | . . 3 ⊢ (∃!𝑥𝜑 ↔ (℩𝑥𝜑) = (℩'𝑥𝜑)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = (℩'𝑥𝜑)) |
3 | iotaint 6449 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) | |
4 | 2, 3 | eqtr3d 2778 | 1 ⊢ (∃!𝑥𝜑 → (℩'𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∃!weu 2566 {cab 2713 ∩ cint 4893 ℩cio 6423 ℩'caiota 44915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-sn 4573 df-pr 4575 df-uni 4852 df-int 4894 df-iota 6425 df-aiota 44917 |
This theorem is referenced by: dfaiota3 44924 |
Copyright terms: Public domain | W3C validator |