| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > antisymressn | Structured version Visualization version GIF version | ||
| Description: Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38402) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024.) |
| Ref | Expression |
|---|---|
| antisymressn | ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brressn 38401 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑦))) | |
| 2 | 1 | el2v 3470 | . . . 4 ⊢ (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑦)) |
| 3 | 2 | simplbi 497 | . . 3 ⊢ (𝑥(𝑅 ↾ {𝐴})𝑦 → 𝑥 = 𝐴) |
| 4 | brressn 38401 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(𝑅 ↾ {𝐴})𝑥 ↔ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑥))) | |
| 5 | 4 | el2v 3470 | . . . 4 ⊢ (𝑦(𝑅 ↾ {𝐴})𝑥 ↔ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑥)) |
| 6 | 5 | simplbi 497 | . . 3 ⊢ (𝑦(𝑅 ↾ {𝐴})𝑥 → 𝑦 = 𝐴) |
| 7 | eqtr3 2756 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
| 8 | 3, 6, 7 | syl2an 596 | . 2 ⊢ ((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) |
| 9 | 8 | gen2 1795 | 1 ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 Vcvv 3463 {csn 4606 class class class wbr 5123 ↾ cres 5667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-res 5677 |
| This theorem is referenced by: antisymrelressn 38724 |
| Copyright terms: Public domain | W3C validator |