Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  antisymressn Structured version   Visualization version   GIF version

Theorem antisymressn 38556
Description: Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 38554) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024.)
Assertion
Ref Expression
antisymressn 𝑥𝑦((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦)

Proof of Theorem antisymressn
StepHypRef Expression
1 brressn 38553 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴𝑥𝑅𝑦)))
21el2v 3443 . . . 4 (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴𝑥𝑅𝑦))
32simplbi 497 . . 3 (𝑥(𝑅 ↾ {𝐴})𝑦𝑥 = 𝐴)
4 brressn 38553 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(𝑅 ↾ {𝐴})𝑥 ↔ (𝑦 = 𝐴𝑦𝑅𝑥)))
54el2v 3443 . . . 4 (𝑦(𝑅 ↾ {𝐴})𝑥 ↔ (𝑦 = 𝐴𝑦𝑅𝑥))
65simplbi 497 . . 3 (𝑦(𝑅 ↾ {𝐴})𝑥𝑦 = 𝐴)
7 eqtr3 2753 . . 3 ((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
83, 6, 7syl2an 596 . 2 ((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦)
98gen2 1797 1 𝑥𝑦((𝑥(𝑅 ↾ {𝐴})𝑦𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  Vcvv 3436  {csn 4573   class class class wbr 5089  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626
This theorem is referenced by:  antisymrelressn  38872
  Copyright terms: Public domain W3C validator