Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > antisymressn | Structured version Visualization version GIF version |
Description: Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 36656) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024.) |
Ref | Expression |
---|---|
antisymressn | ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brressn 36655 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑦))) | |
2 | 1 | el2v 3445 | . . . 4 ⊢ (𝑥(𝑅 ↾ {𝐴})𝑦 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑦)) |
3 | 2 | simplbi 499 | . . 3 ⊢ (𝑥(𝑅 ↾ {𝐴})𝑦 → 𝑥 = 𝐴) |
4 | brressn 36655 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦(𝑅 ↾ {𝐴})𝑥 ↔ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑥))) | |
5 | 4 | el2v 3445 | . . . 4 ⊢ (𝑦(𝑅 ↾ {𝐴})𝑥 ↔ (𝑦 = 𝐴 ∧ 𝑦𝑅𝑥)) |
6 | 5 | simplbi 499 | . . 3 ⊢ (𝑦(𝑅 ↾ {𝐴})𝑥 → 𝑦 = 𝐴) |
7 | eqtr3 2762 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
8 | 3, 6, 7 | syl2an 597 | . 2 ⊢ ((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) |
9 | 8 | gen2 1796 | 1 ⊢ ∀𝑥∀𝑦((𝑥(𝑅 ↾ {𝐴})𝑦 ∧ 𝑦(𝑅 ↾ {𝐴})𝑥) → 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 = wceq 1539 Vcvv 3437 {csn 4565 class class class wbr 5081 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-res 5612 |
This theorem is referenced by: antisymrelressn 36978 |
Copyright terms: Public domain | W3C validator |