HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hst1h Structured version   Visualization version   GIF version

Theorem hst1h 32259
Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hst1h ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))

Proof of Theorem hst1h
StepHypRef Expression
1 hstcl 32249 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
2 ax-hvaddid 31036 . . . . 5 ((𝑆𝐴) ∈ ℋ → ((𝑆𝐴) + 0) = (𝑆𝐴))
31, 2syl 17 . . . 4 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + 0) = (𝑆𝐴))
43adantr 480 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + 0) = (𝑆𝐴))
5 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
6 choccl 31338 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
7 hstcl 32249 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ C ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ)
86, 7sylan2 592 . . . . . . . . . . . . . . 15 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ)
9 normcl 31157 . . . . . . . . . . . . . . 15 ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . 14 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℝ)
1110resqcld 14175 . . . . . . . . . . . . 13 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ)
1211recnd 11318 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ)
13 pncan2 11543 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
145, 12, 13sylancr 586 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
1514adantr 480 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
16 oveq1 7455 . . . . . . . . . . . . . 14 ((norm‘(𝑆𝐴)) = 1 → ((norm‘(𝑆𝐴))↑2) = (1↑2))
17 sq1 14244 . . . . . . . . . . . . . 14 (1↑2) = 1
1816, 17eqtr2di 2797 . . . . . . . . . . . . 13 ((norm‘(𝑆𝐴)) = 1 → 1 = ((norm‘(𝑆𝐴))↑2))
1918oveq1d 7463 . . . . . . . . . . . 12 ((norm‘(𝑆𝐴)) = 1 → (1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)))
20 hstnmoc 32255 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
2119, 20sylan9eqr 2802 . . . . . . . . . . 11 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
2221oveq1d 7463 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1))
2315, 22eqtr3d 2782 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1))
24 1m1e0 12365 . . . . . . . . 9 (1 − 1) = 0
2523, 24eqtrdi 2796 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0)
2625ex 412 . . . . . . 7 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0))
2710recnd 11318 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℂ)
28 sqeq0 14170 . . . . . . . . 9 ((norm‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (norm‘(𝑆‘(⊥‘𝐴))) = 0))
2927, 28syl 17 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (norm‘(𝑆‘(⊥‘𝐴))) = 0))
30 norm-i 31161 . . . . . . . . 9 ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((norm‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
318, 30syl 17 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
3229, 31bitrd 279 . . . . . . 7 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
3326, 32sylibd 239 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0))
3433imp 406 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0)
3534oveq2d 7464 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = ((𝑆𝐴) + 0))
36 hstoc 32254 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
3736adantr 480 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
3835, 37eqtr3d 2782 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + 0) = (𝑆‘ ℋ))
394, 38eqtr3d 2782 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (𝑆𝐴) = (𝑆‘ ℋ))
40 fveq2 6920 . . 3 ((𝑆𝐴) = (𝑆‘ ℋ) → (norm‘(𝑆𝐴)) = (norm‘(𝑆‘ ℋ)))
41 hst1a 32250 . . . 4 (𝑆 ∈ CHStates → (norm‘(𝑆‘ ℋ)) = 1)
4241adantr 480 . . 3 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘ ℋ)) = 1)
4340, 42sylan9eqr 2802 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝑆𝐴) = (𝑆‘ ℋ)) → (norm‘(𝑆𝐴)) = 1)
4439, 43impbida 800 1 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  2c2 12348  cexp 14112  chba 30951   + cva 30952  normcno 30955  0c0v 30956   C cch 30961  cort 30962  CHStateschst 30995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cau 25309  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-hnorm 31000  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-chj 31342  df-hst 32244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator