![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hst1h | Structured version Visualization version GIF version |
Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hst1h | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstcl 32246 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
2 | ax-hvaddid 31033 | . . . . 5 ⊢ ((𝑆‘𝐴) ∈ ℋ → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
4 | 3 | adantr 480 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
5 | ax-1cn 11211 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
6 | choccl 31335 | . . . . . . . . . . . . . . . 16 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
7 | hstcl 32246 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) | |
8 | 6, 7 | sylan2 593 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) |
9 | normcl 31154 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . . . . . . . . . . . . . 14 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) |
11 | 10 | resqcld 14162 | . . . . . . . . . . . . 13 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ) |
12 | 11 | recnd 11287 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) |
13 | pncan2 11513 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℂ ∧ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) | |
14 | 5, 12, 13 | sylancr 587 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
16 | oveq1 7438 | . . . . . . . . . . . . . 14 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘𝐴))↑2) = (1↑2)) | |
17 | sq1 14231 | . . . . . . . . . . . . . 14 ⊢ (1↑2) = 1 | |
18 | 16, 17 | eqtr2di 2792 | . . . . . . . . . . . . 13 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → 1 = ((normℎ‘(𝑆‘𝐴))↑2)) |
19 | 18 | oveq1d 7446 | . . . . . . . . . . . 12 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2))) |
20 | hstnmoc 32252 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | |
21 | 19, 20 | sylan9eqr 2797 | . . . . . . . . . . 11 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) |
22 | 21 | oveq1d 7446 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1)) |
23 | 15, 22 | eqtr3d 2777 | . . . . . . . . 9 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1)) |
24 | 1m1e0 12336 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
25 | 23, 24 | eqtrdi 2791 | . . . . . . . 8 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0) |
26 | 25 | ex 412 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0)) |
27 | 10 | recnd 11287 | . . . . . . . . 9 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ) |
28 | sqeq0 14157 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) | |
29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) |
30 | norm-i 31158 | . . . . . . . . 9 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) | |
31 | 8, 30 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
32 | 29, 31 | bitrd 279 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
33 | 26, 32 | sylibd 239 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
34 | 33 | imp 406 | . . . . 5 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0ℎ) |
35 | 34 | oveq2d 7447 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = ((𝑆‘𝐴) +ℎ 0ℎ)) |
36 | hstoc 32251 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) | |
37 | 36 | adantr 480 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) |
38 | 35, 37 | eqtr3d 2777 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘ ℋ)) |
39 | 4, 38 | eqtr3d 2777 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘𝐴) = (𝑆‘ ℋ)) |
40 | fveq2 6907 | . . 3 ⊢ ((𝑆‘𝐴) = (𝑆‘ ℋ) → (normℎ‘(𝑆‘𝐴)) = (normℎ‘(𝑆‘ ℋ))) | |
41 | hst1a 32247 | . . . 4 ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) | |
42 | 41 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘ ℋ)) = 1) |
43 | 40, 42 | sylan9eqr 2797 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝑆‘𝐴) = (𝑆‘ ℋ)) → (normℎ‘(𝑆‘𝐴)) = 1) |
44 | 39, 43 | impbida 801 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 − cmin 11490 2c2 12319 ↑cexp 14099 ℋchba 30948 +ℎ cva 30949 normℎcno 30952 0ℎc0v 30953 Cℋ cch 30958 ⊥cort 30959 CHStateschst 30992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 ax-hilex 31028 ax-hfvadd 31029 ax-hvcom 31030 ax-hvass 31031 ax-hv0cl 31032 ax-hvaddid 31033 ax-hfvmul 31034 ax-hvmulid 31035 ax-hvmulass 31036 ax-hvdistr1 31037 ax-hvdistr2 31038 ax-hvmul0 31039 ax-hfi 31108 ax-his1 31111 ax-his2 31112 ax-his3 31113 ax-his4 31114 ax-hcompl 31231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cn 23251 df-cnp 23252 df-lm 23253 df-haus 23339 df-tx 23586 df-hmeo 23779 df-xms 24346 df-ms 24347 df-tms 24348 df-cau 25304 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-vs 30628 df-nmcv 30629 df-ims 30630 df-dip 30730 df-hnorm 30997 df-hvsub 31000 df-hlim 31001 df-hcau 31002 df-sh 31236 df-ch 31250 df-oc 31281 df-ch0 31282 df-chj 31339 df-hst 32241 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |