HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hst1h Structured version   Visualization version   GIF version

Theorem hst1h 32247
Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hst1h ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))

Proof of Theorem hst1h
StepHypRef Expression
1 hstcl 32237 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
2 ax-hvaddid 31024 . . . . 5 ((𝑆𝐴) ∈ ℋ → ((𝑆𝐴) + 0) = (𝑆𝐴))
31, 2syl 17 . . . 4 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + 0) = (𝑆𝐴))
43adantr 480 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + 0) = (𝑆𝐴))
5 ax-1cn 11214 . . . . . . . . . . . 12 1 ∈ ℂ
6 choccl 31326 . . . . . . . . . . . . . . . 16 (𝐴C → (⊥‘𝐴) ∈ C )
7 hstcl 32237 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ C ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ)
86, 7sylan2 593 . . . . . . . . . . . . . . 15 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ)
9 normcl 31145 . . . . . . . . . . . . . . 15 ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℝ)
108, 9syl 17 . . . . . . . . . . . . . 14 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℝ)
1110resqcld 14166 . . . . . . . . . . . . 13 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ)
1211recnd 11290 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ)
13 pncan2 11516 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((norm‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
145, 12, 13sylancr 587 . . . . . . . . . . 11 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
1514adantr 480 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((norm‘(𝑆‘(⊥‘𝐴)))↑2))
16 oveq1 7439 . . . . . . . . . . . . . 14 ((norm‘(𝑆𝐴)) = 1 → ((norm‘(𝑆𝐴))↑2) = (1↑2))
17 sq1 14235 . . . . . . . . . . . . . 14 (1↑2) = 1
1816, 17eqtr2di 2793 . . . . . . . . . . . . 13 ((norm‘(𝑆𝐴)) = 1 → 1 = ((norm‘(𝑆𝐴))↑2))
1918oveq1d 7447 . . . . . . . . . . . 12 ((norm‘(𝑆𝐴)) = 1 → (1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)))
20 hstnmoc 32243 . . . . . . . . . . . 12 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
2119, 20sylan9eqr 2798 . . . . . . . . . . 11 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
2221oveq1d 7447 . . . . . . . . . 10 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((1 + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1))
2315, 22eqtr3d 2778 . . . . . . . . 9 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1))
24 1m1e0 12339 . . . . . . . . 9 (1 − 1) = 0
2523, 24eqtrdi 2792 . . . . . . . 8 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0)
2625ex 412 . . . . . . 7 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 → ((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0))
2710recnd 11290 . . . . . . . . 9 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘(⊥‘𝐴))) ∈ ℂ)
28 sqeq0 14161 . . . . . . . . 9 ((norm‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (norm‘(𝑆‘(⊥‘𝐴))) = 0))
2927, 28syl 17 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (norm‘(𝑆‘(⊥‘𝐴))) = 0))
30 norm-i 31149 . . . . . . . . 9 ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((norm‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
318, 30syl 17 . . . . . . . 8 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
3229, 31bitrd 279 . . . . . . 7 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0))
3326, 32sylibd 239 . . . . . 6 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0))
3433imp 406 . . . . 5 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0)
3534oveq2d 7448 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = ((𝑆𝐴) + 0))
36 hstoc 32242 . . . . 5 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
3736adantr 480 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
3835, 37eqtr3d 2778 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → ((𝑆𝐴) + 0) = (𝑆‘ ℋ))
394, 38eqtr3d 2778 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (norm‘(𝑆𝐴)) = 1) → (𝑆𝐴) = (𝑆‘ ℋ))
40 fveq2 6905 . . 3 ((𝑆𝐴) = (𝑆‘ ℋ) → (norm‘(𝑆𝐴)) = (norm‘(𝑆‘ ℋ)))
41 hst1a 32238 . . . 4 (𝑆 ∈ CHStates → (norm‘(𝑆‘ ℋ)) = 1)
4241adantr 480 . . 3 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆‘ ℋ)) = 1)
4340, 42sylan9eqr 2798 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝑆𝐴) = (𝑆‘ ℋ)) → (norm‘(𝑆𝐴)) = 1)
4439, 43impbida 800 1 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159  cmin 11493  2c2 12322  cexp 14103  chba 30939   + cva 30940  normcno 30943  0c0v 30944   C cch 30949  cort 30950  CHStateschst 30983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236  ax-hilex 31019  ax-hfvadd 31020  ax-hvcom 31021  ax-hvass 31022  ax-hv0cl 31023  ax-hvaddid 31024  ax-hfvmul 31025  ax-hvmulid 31026  ax-hvmulass 31027  ax-hvdistr1 31028  ax-hvdistr2 31029  ax-hvmul0 31030  ax-hfi 31099  ax-his1 31102  ax-his2 31103  ax-his3 31104  ax-his4 31105  ax-hcompl 31222
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cn 23236  df-cnp 23237  df-lm 23238  df-haus 23324  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-cau 25291  df-grpo 30513  df-gid 30514  df-ginv 30515  df-gdiv 30516  df-ablo 30565  df-vc 30579  df-nv 30612  df-va 30615  df-ba 30616  df-sm 30617  df-0v 30618  df-vs 30619  df-nmcv 30620  df-ims 30621  df-dip 30721  df-hnorm 30988  df-hvsub 30991  df-hlim 30992  df-hcau 30993  df-sh 31227  df-ch 31241  df-oc 31272  df-ch0 31273  df-chj 31330  df-hst 32232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator