| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hst1h | Structured version Visualization version GIF version | ||
| Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hst1h | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hstcl 32146 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
| 2 | ax-hvaddid 30933 | . . . . 5 ⊢ ((𝑆‘𝐴) ∈ ℋ → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
| 5 | ax-1cn 11126 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
| 6 | choccl 31235 | . . . . . . . . . . . . . . . 16 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 7 | hstcl 32146 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) | |
| 8 | 6, 7 | sylan2 593 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) |
| 9 | normcl 31054 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) | |
| 10 | 8, 9 | syl 17 | . . . . . . . . . . . . . 14 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) |
| 11 | 10 | resqcld 14090 | . . . . . . . . . . . . 13 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ) |
| 12 | 11 | recnd 11202 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) |
| 13 | pncan2 11428 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℂ ∧ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) | |
| 14 | 5, 12, 13 | sylancr 587 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
| 15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
| 16 | oveq1 7394 | . . . . . . . . . . . . . 14 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘𝐴))↑2) = (1↑2)) | |
| 17 | sq1 14160 | . . . . . . . . . . . . . 14 ⊢ (1↑2) = 1 | |
| 18 | 16, 17 | eqtr2di 2781 | . . . . . . . . . . . . 13 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → 1 = ((normℎ‘(𝑆‘𝐴))↑2)) |
| 19 | 18 | oveq1d 7402 | . . . . . . . . . . . 12 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2))) |
| 20 | hstnmoc 32152 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | |
| 21 | 19, 20 | sylan9eqr 2786 | . . . . . . . . . . 11 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) |
| 22 | 21 | oveq1d 7402 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1)) |
| 23 | 15, 22 | eqtr3d 2766 | . . . . . . . . 9 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1)) |
| 24 | 1m1e0 12258 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
| 25 | 23, 24 | eqtrdi 2780 | . . . . . . . 8 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0) |
| 26 | 25 | ex 412 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0)) |
| 27 | 10 | recnd 11202 | . . . . . . . . 9 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ) |
| 28 | sqeq0 14085 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) | |
| 29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) |
| 30 | norm-i 31058 | . . . . . . . . 9 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) | |
| 31 | 8, 30 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
| 32 | 29, 31 | bitrd 279 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
| 33 | 26, 32 | sylibd 239 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
| 34 | 33 | imp 406 | . . . . 5 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0ℎ) |
| 35 | 34 | oveq2d 7403 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = ((𝑆‘𝐴) +ℎ 0ℎ)) |
| 36 | hstoc 32151 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) | |
| 37 | 36 | adantr 480 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) |
| 38 | 35, 37 | eqtr3d 2766 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘ ℋ)) |
| 39 | 4, 38 | eqtr3d 2766 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘𝐴) = (𝑆‘ ℋ)) |
| 40 | fveq2 6858 | . . 3 ⊢ ((𝑆‘𝐴) = (𝑆‘ ℋ) → (normℎ‘(𝑆‘𝐴)) = (normℎ‘(𝑆‘ ℋ))) | |
| 41 | hst1a 32147 | . . . 4 ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) | |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘ ℋ)) = 1) |
| 43 | 40, 42 | sylan9eqr 2786 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝑆‘𝐴) = (𝑆‘ ℋ)) → (normℎ‘(𝑆‘𝐴)) = 1) |
| 44 | 39, 43 | impbida 800 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 − cmin 11405 2c2 12241 ↑cexp 14026 ℋchba 30848 +ℎ cva 30849 normℎcno 30852 0ℎc0v 30853 Cℋ cch 30858 ⊥cort 30859 CHStateschst 30892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 ax-hilex 30928 ax-hfvadd 30929 ax-hvcom 30930 ax-hvass 30931 ax-hv0cl 30932 ax-hvaddid 30933 ax-hfvmul 30934 ax-hvmulid 30935 ax-hvmulass 30936 ax-hvdistr1 30937 ax-hvdistr2 30938 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 ax-hcompl 31131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cn 23114 df-cnp 23115 df-lm 23116 df-haus 23202 df-tx 23449 df-hmeo 23642 df-xms 24208 df-ms 24209 df-tms 24210 df-cau 25156 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 df-dip 30630 df-hnorm 30897 df-hvsub 30900 df-hlim 30901 df-hcau 30902 df-sh 31136 df-ch 31150 df-oc 31181 df-ch0 31182 df-chj 31239 df-hst 32141 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |