![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hst1h | Structured version Visualization version GIF version |
Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hst1h | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstcl 32249 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
2 | ax-hvaddid 31036 | . . . . 5 ⊢ ((𝑆‘𝐴) ∈ ℋ → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
4 | 3 | adantr 480 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
5 | ax-1cn 11242 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
6 | choccl 31338 | . . . . . . . . . . . . . . . 16 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
7 | hstcl 32249 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) | |
8 | 6, 7 | sylan2 592 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) |
9 | normcl 31157 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . . . . . . . . . . . . . 14 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) |
11 | 10 | resqcld 14175 | . . . . . . . . . . . . 13 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ) |
12 | 11 | recnd 11318 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) |
13 | pncan2 11543 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℂ ∧ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) | |
14 | 5, 12, 13 | sylancr 586 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
16 | oveq1 7455 | . . . . . . . . . . . . . 14 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘𝐴))↑2) = (1↑2)) | |
17 | sq1 14244 | . . . . . . . . . . . . . 14 ⊢ (1↑2) = 1 | |
18 | 16, 17 | eqtr2di 2797 | . . . . . . . . . . . . 13 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → 1 = ((normℎ‘(𝑆‘𝐴))↑2)) |
19 | 18 | oveq1d 7463 | . . . . . . . . . . . 12 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2))) |
20 | hstnmoc 32255 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | |
21 | 19, 20 | sylan9eqr 2802 | . . . . . . . . . . 11 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) |
22 | 21 | oveq1d 7463 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1)) |
23 | 15, 22 | eqtr3d 2782 | . . . . . . . . 9 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1)) |
24 | 1m1e0 12365 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
25 | 23, 24 | eqtrdi 2796 | . . . . . . . 8 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0) |
26 | 25 | ex 412 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0)) |
27 | 10 | recnd 11318 | . . . . . . . . 9 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ) |
28 | sqeq0 14170 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) | |
29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) |
30 | norm-i 31161 | . . . . . . . . 9 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) | |
31 | 8, 30 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
32 | 29, 31 | bitrd 279 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
33 | 26, 32 | sylibd 239 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
34 | 33 | imp 406 | . . . . 5 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0ℎ) |
35 | 34 | oveq2d 7464 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = ((𝑆‘𝐴) +ℎ 0ℎ)) |
36 | hstoc 32254 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) | |
37 | 36 | adantr 480 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) |
38 | 35, 37 | eqtr3d 2782 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘ ℋ)) |
39 | 4, 38 | eqtr3d 2782 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘𝐴) = (𝑆‘ ℋ)) |
40 | fveq2 6920 | . . 3 ⊢ ((𝑆‘𝐴) = (𝑆‘ ℋ) → (normℎ‘(𝑆‘𝐴)) = (normℎ‘(𝑆‘ ℋ))) | |
41 | hst1a 32250 | . . . 4 ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) | |
42 | 41 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘ ℋ)) = 1) |
43 | 40, 42 | sylan9eqr 2802 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝑆‘𝐴) = (𝑆‘ ℋ)) → (normℎ‘(𝑆‘𝐴)) = 1) |
44 | 39, 43 | impbida 800 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 − cmin 11520 2c2 12348 ↑cexp 14112 ℋchba 30951 +ℎ cva 30952 normℎcno 30955 0ℎc0v 30956 Cℋ cch 30961 ⊥cort 30962 CHStateschst 30995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 ax-hcompl 31234 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-lm 23258 df-haus 23344 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cau 25309 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 df-dip 30733 df-hnorm 31000 df-hvsub 31003 df-hlim 31004 df-hcau 31005 df-sh 31239 df-ch 31253 df-oc 31284 df-ch0 31285 df-chj 31342 df-hst 32244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |