| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hst1h | Structured version Visualization version GIF version | ||
| Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hst1h | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hstcl 32237 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
| 2 | ax-hvaddid 31024 | . . . . 5 ⊢ ((𝑆‘𝐴) ∈ ℋ → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
| 5 | ax-1cn 11214 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
| 6 | choccl 31326 | . . . . . . . . . . . . . . . 16 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 7 | hstcl 32237 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) | |
| 8 | 6, 7 | sylan2 593 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) |
| 9 | normcl 31145 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) | |
| 10 | 8, 9 | syl 17 | . . . . . . . . . . . . . 14 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) |
| 11 | 10 | resqcld 14166 | . . . . . . . . . . . . 13 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ) |
| 12 | 11 | recnd 11290 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) |
| 13 | pncan2 11516 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℂ ∧ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) | |
| 14 | 5, 12, 13 | sylancr 587 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
| 15 | 14 | adantr 480 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
| 16 | oveq1 7439 | . . . . . . . . . . . . . 14 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘𝐴))↑2) = (1↑2)) | |
| 17 | sq1 14235 | . . . . . . . . . . . . . 14 ⊢ (1↑2) = 1 | |
| 18 | 16, 17 | eqtr2di 2793 | . . . . . . . . . . . . 13 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → 1 = ((normℎ‘(𝑆‘𝐴))↑2)) |
| 19 | 18 | oveq1d 7447 | . . . . . . . . . . . 12 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2))) |
| 20 | hstnmoc 32243 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | |
| 21 | 19, 20 | sylan9eqr 2798 | . . . . . . . . . . 11 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) |
| 22 | 21 | oveq1d 7447 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1)) |
| 23 | 15, 22 | eqtr3d 2778 | . . . . . . . . 9 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1)) |
| 24 | 1m1e0 12339 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
| 25 | 23, 24 | eqtrdi 2792 | . . . . . . . 8 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0) |
| 26 | 25 | ex 412 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0)) |
| 27 | 10 | recnd 11290 | . . . . . . . . 9 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ) |
| 28 | sqeq0 14161 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) | |
| 29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) |
| 30 | norm-i 31149 | . . . . . . . . 9 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) | |
| 31 | 8, 30 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
| 32 | 29, 31 | bitrd 279 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
| 33 | 26, 32 | sylibd 239 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
| 34 | 33 | imp 406 | . . . . 5 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0ℎ) |
| 35 | 34 | oveq2d 7448 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = ((𝑆‘𝐴) +ℎ 0ℎ)) |
| 36 | hstoc 32242 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) | |
| 37 | 36 | adantr 480 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) |
| 38 | 35, 37 | eqtr3d 2778 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘ ℋ)) |
| 39 | 4, 38 | eqtr3d 2778 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘𝐴) = (𝑆‘ ℋ)) |
| 40 | fveq2 6905 | . . 3 ⊢ ((𝑆‘𝐴) = (𝑆‘ ℋ) → (normℎ‘(𝑆‘𝐴)) = (normℎ‘(𝑆‘ ℋ))) | |
| 41 | hst1a 32238 | . . . 4 ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) | |
| 42 | 41 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘ ℋ)) = 1) |
| 43 | 40, 42 | sylan9eqr 2798 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝑆‘𝐴) = (𝑆‘ ℋ)) → (normℎ‘(𝑆‘𝐴)) = 1) |
| 44 | 39, 43 | impbida 800 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ℝcr 11155 0cc0 11156 1c1 11157 + caddc 11159 − cmin 11493 2c2 12322 ↑cexp 14103 ℋchba 30939 +ℎ cva 30940 normℎcno 30943 0ℎc0v 30944 Cℋ cch 30949 ⊥cort 30950 CHStateschst 30983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 ax-mulf 11236 ax-hilex 31019 ax-hfvadd 31020 ax-hvcom 31021 ax-hvass 31022 ax-hv0cl 31023 ax-hvaddid 31024 ax-hfvmul 31025 ax-hvmulid 31026 ax-hvmulass 31027 ax-hvdistr1 31028 ax-hvdistr2 31029 ax-hvmul0 31030 ax-hfi 31099 ax-his1 31102 ax-his2 31103 ax-his3 31104 ax-his4 31105 ax-hcompl 31222 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-icc 13395 df-fz 13549 df-fzo 13696 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-mulg 19087 df-cntz 19336 df-cmn 19801 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-cnfld 21366 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cn 23236 df-cnp 23237 df-lm 23238 df-haus 23324 df-tx 23571 df-hmeo 23764 df-xms 24331 df-ms 24332 df-tms 24333 df-cau 25291 df-grpo 30513 df-gid 30514 df-ginv 30515 df-gdiv 30516 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-vs 30619 df-nmcv 30620 df-ims 30621 df-dip 30721 df-hnorm 30988 df-hvsub 30991 df-hlim 30992 df-hcau 30993 df-sh 31227 df-ch 31241 df-oc 31272 df-ch0 31273 df-chj 31330 df-hst 32232 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |