Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubcan2i | Structured version Visualization version GIF version |
Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvsubcan2i | ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = (2 ·ℎ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2 | hvsubvali 29431 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
4 | 3 | oveq2i 7318 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = ((𝐴 +ℎ 𝐵) +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
5 | neg1cn 12137 | . . . . . 6 ⊢ -1 ∈ ℂ | |
6 | 5, 2 | hvmulcli 29425 | . . . . 5 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
7 | 1, 2, 1, 6 | hvadd4i 29469 | . . . 4 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝐴 +ℎ 𝐴) +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) |
8 | hv2times 29472 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) | |
9 | 1, 8 | ax-mp 5 | . . . . . 6 ⊢ (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴) |
10 | 9 | eqcomi 2745 | . . . . 5 ⊢ (𝐴 +ℎ 𝐴) = (2 ·ℎ 𝐴) |
11 | 2 | hvnegidi 29441 | . . . . 5 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐵)) = 0ℎ |
12 | 10, 11 | oveq12i 7319 | . . . 4 ⊢ ((𝐴 +ℎ 𝐴) +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = ((2 ·ℎ 𝐴) +ℎ 0ℎ) |
13 | 7, 12 | eqtri 2764 | . . 3 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((2 ·ℎ 𝐴) +ℎ 0ℎ) |
14 | 2cn 12098 | . . . . 5 ⊢ 2 ∈ ℂ | |
15 | 14, 1 | hvmulcli 29425 | . . . 4 ⊢ (2 ·ℎ 𝐴) ∈ ℋ |
16 | ax-hvaddid 29415 | . . . 4 ⊢ ((2 ·ℎ 𝐴) ∈ ℋ → ((2 ·ℎ 𝐴) +ℎ 0ℎ) = (2 ·ℎ 𝐴)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ((2 ·ℎ 𝐴) +ℎ 0ℎ) = (2 ·ℎ 𝐴) |
18 | 13, 17 | eqtri 2764 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (2 ·ℎ 𝐴) |
19 | 4, 18 | eqtri 2764 | 1 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = (2 ·ℎ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 (class class class)co 7307 1c1 10922 -cneg 11256 2c2 12078 ℋchba 29330 +ℎ cva 29331 ·ℎ csm 29332 0ℎc0v 29335 −ℎ cmv 29336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-hfvadd 29411 ax-hvcom 29412 ax-hvass 29413 ax-hvaddid 29415 ax-hfvmul 29416 ax-hvmulid 29417 ax-hvdistr1 29419 ax-hvdistr2 29420 ax-hvmul0 29421 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-ltxr 11064 df-sub 11257 df-neg 11258 df-2 12086 df-hvsub 29382 |
This theorem is referenced by: normpar2i 29567 |
Copyright terms: Public domain | W3C validator |