HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcan2i Structured version   Visualization version   GIF version

Theorem hvsubcan2i 31036
Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvsubcan2i ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)

Proof of Theorem hvsubcan2i
StepHypRef Expression
1 hvnegdi.1 . . . 4 𝐴 ∈ ℋ
2 hvnegdi.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 30992 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
43oveq2i 7352 . 2 ((𝐴 + 𝐵) + (𝐴 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + (-1 · 𝐵)))
5 neg1cn 12105 . . . . . 6 -1 ∈ ℂ
65, 2hvmulcli 30986 . . . . 5 (-1 · 𝐵) ∈ ℋ
71, 2, 1, 6hvadd4i 31030 . . . 4 ((𝐴 + 𝐵) + (𝐴 + (-1 · 𝐵))) = ((𝐴 + 𝐴) + (𝐵 + (-1 · 𝐵)))
8 hv2times 31033 . . . . . . 7 (𝐴 ∈ ℋ → (2 · 𝐴) = (𝐴 + 𝐴))
91, 8ax-mp 5 . . . . . 6 (2 · 𝐴) = (𝐴 + 𝐴)
109eqcomi 2740 . . . . 5 (𝐴 + 𝐴) = (2 · 𝐴)
112hvnegidi 31002 . . . . 5 (𝐵 + (-1 · 𝐵)) = 0
1210, 11oveq12i 7353 . . . 4 ((𝐴 + 𝐴) + (𝐵 + (-1 · 𝐵))) = ((2 · 𝐴) + 0)
137, 12eqtri 2754 . . 3 ((𝐴 + 𝐵) + (𝐴 + (-1 · 𝐵))) = ((2 · 𝐴) + 0)
14 2cn 12195 . . . . 5 2 ∈ ℂ
1514, 1hvmulcli 30986 . . . 4 (2 · 𝐴) ∈ ℋ
16 ax-hvaddid 30976 . . . 4 ((2 · 𝐴) ∈ ℋ → ((2 · 𝐴) + 0) = (2 · 𝐴))
1715, 16ax-mp 5 . . 3 ((2 · 𝐴) + 0) = (2 · 𝐴)
1813, 17eqtri 2754 . 2 ((𝐴 + 𝐵) + (𝐴 + (-1 · 𝐵))) = (2 · 𝐴)
194, 18eqtri 2754 1 ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  (class class class)co 7341  1c1 11002  -cneg 11340  2c2 12175  chba 30891   + cva 30892   · csm 30893  0c0v 30896   cmv 30897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-hfvadd 30972  ax-hvcom 30973  ax-hvass 30974  ax-hvaddid 30976  ax-hfvmul 30977  ax-hvmulid 30978  ax-hvdistr1 30980  ax-hvdistr2 30981  ax-hvmul0 30982
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-sub 11341  df-neg 11342  df-2 12183  df-hvsub 30943
This theorem is referenced by:  normpar2i  31128
  Copyright terms: Public domain W3C validator