HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcan2i Structured version   Visualization version   GIF version

Theorem hvsubcan2i 31083
Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hvnegdi.1 𝐴 ∈ ℋ
hvnegdi.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hvsubcan2i ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)

Proof of Theorem hvsubcan2i
StepHypRef Expression
1 hvnegdi.1 . . . 4 𝐴 ∈ ℋ
2 hvnegdi.2 . . . 4 𝐵 ∈ ℋ
31, 2hvsubvali 31039 . . 3 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
43oveq2i 7442 . 2 ((𝐴 + 𝐵) + (𝐴 𝐵)) = ((𝐴 + 𝐵) + (𝐴 + (-1 · 𝐵)))
5 neg1cn 12380 . . . . . 6 -1 ∈ ℂ
65, 2hvmulcli 31033 . . . . 5 (-1 · 𝐵) ∈ ℋ
71, 2, 1, 6hvadd4i 31077 . . . 4 ((𝐴 + 𝐵) + (𝐴 + (-1 · 𝐵))) = ((𝐴 + 𝐴) + (𝐵 + (-1 · 𝐵)))
8 hv2times 31080 . . . . . . 7 (𝐴 ∈ ℋ → (2 · 𝐴) = (𝐴 + 𝐴))
91, 8ax-mp 5 . . . . . 6 (2 · 𝐴) = (𝐴 + 𝐴)
109eqcomi 2746 . . . . 5 (𝐴 + 𝐴) = (2 · 𝐴)
112hvnegidi 31049 . . . . 5 (𝐵 + (-1 · 𝐵)) = 0
1210, 11oveq12i 7443 . . . 4 ((𝐴 + 𝐴) + (𝐵 + (-1 · 𝐵))) = ((2 · 𝐴) + 0)
137, 12eqtri 2765 . . 3 ((𝐴 + 𝐵) + (𝐴 + (-1 · 𝐵))) = ((2 · 𝐴) + 0)
14 2cn 12341 . . . . 5 2 ∈ ℂ
1514, 1hvmulcli 31033 . . . 4 (2 · 𝐴) ∈ ℋ
16 ax-hvaddid 31023 . . . 4 ((2 · 𝐴) ∈ ℋ → ((2 · 𝐴) + 0) = (2 · 𝐴))
1715, 16ax-mp 5 . . 3 ((2 · 𝐴) + 0) = (2 · 𝐴)
1813, 17eqtri 2765 . 2 ((𝐴 + 𝐵) + (𝐴 + (-1 · 𝐵))) = (2 · 𝐴)
194, 18eqtri 2765 1 ((𝐴 + 𝐵) + (𝐴 𝐵)) = (2 · 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7431  1c1 11156  -cneg 11493  2c2 12321  chba 30938   + cva 30939   · csm 30940  0c0v 30943   cmv 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-2 12329  df-hvsub 30990
This theorem is referenced by:  normpar2i  31175
  Copyright terms: Public domain W3C validator