| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubcan2i | Structured version Visualization version GIF version | ||
| Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvnegdi.1 | ⊢ 𝐴 ∈ ℋ |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hvsubcan2i | ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = (2 ·ℎ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | 1, 2 | hvsubvali 30983 | . . 3 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
| 4 | 3 | oveq2i 7364 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = ((𝐴 +ℎ 𝐵) +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
| 5 | neg1cn 12132 | . . . . . 6 ⊢ -1 ∈ ℂ | |
| 6 | 5, 2 | hvmulcli 30977 | . . . . 5 ⊢ (-1 ·ℎ 𝐵) ∈ ℋ |
| 7 | 1, 2, 1, 6 | hvadd4i 31021 | . . . 4 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝐴 +ℎ 𝐴) +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) |
| 8 | hv2times 31024 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴)) | |
| 9 | 1, 8 | ax-mp 5 | . . . . . 6 ⊢ (2 ·ℎ 𝐴) = (𝐴 +ℎ 𝐴) |
| 10 | 9 | eqcomi 2738 | . . . . 5 ⊢ (𝐴 +ℎ 𝐴) = (2 ·ℎ 𝐴) |
| 11 | 2 | hvnegidi 30993 | . . . . 5 ⊢ (𝐵 +ℎ (-1 ·ℎ 𝐵)) = 0ℎ |
| 12 | 10, 11 | oveq12i 7365 | . . . 4 ⊢ ((𝐴 +ℎ 𝐴) +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐵))) = ((2 ·ℎ 𝐴) +ℎ 0ℎ) |
| 13 | 7, 12 | eqtri 2752 | . . 3 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((2 ·ℎ 𝐴) +ℎ 0ℎ) |
| 14 | 2cn 12222 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 15 | 14, 1 | hvmulcli 30977 | . . . 4 ⊢ (2 ·ℎ 𝐴) ∈ ℋ |
| 16 | ax-hvaddid 30967 | . . . 4 ⊢ ((2 ·ℎ 𝐴) ∈ ℋ → ((2 ·ℎ 𝐴) +ℎ 0ℎ) = (2 ·ℎ 𝐴)) | |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ ((2 ·ℎ 𝐴) +ℎ 0ℎ) = (2 ·ℎ 𝐴) |
| 18 | 13, 17 | eqtri 2752 | . 2 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐵))) = (2 ·ℎ 𝐴) |
| 19 | 4, 18 | eqtri 2752 | 1 ⊢ ((𝐴 +ℎ 𝐵) +ℎ (𝐴 −ℎ 𝐵)) = (2 ·ℎ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 1c1 11029 -cneg 11367 2c2 12202 ℋchba 30882 +ℎ cva 30883 ·ℎ csm 30884 0ℎc0v 30887 −ℎ cmv 30888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-hfvadd 30963 ax-hvcom 30964 ax-hvass 30965 ax-hvaddid 30967 ax-hfvmul 30968 ax-hvmulid 30969 ax-hvdistr1 30971 ax-hvdistr2 30972 ax-hvmul0 30973 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11368 df-neg 11369 df-2 12210 df-hvsub 30934 |
| This theorem is referenced by: normpar2i 31119 |
| Copyright terms: Public domain | W3C validator |