HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopmul Structured version   Visualization version   GIF version

Theorem lnopmul 31986
Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnopmul ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))

Proof of Theorem lnopmul
StepHypRef Expression
1 ax-hv0cl 31022 . . . 4 0 ∈ ℋ
2 lnopl 31933 . . . 4 (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 0 ∈ ℋ)) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
31, 2mpanr2 704 . . 3 (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
433impa 1110 . 2 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
5 hvmulcl 31032 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
6 ax-hvaddid 31023 . . . . 5 ((𝐴 · 𝐵) ∈ ℋ → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
75, 6syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
873adant1 1131 . . 3 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
98fveq2d 6910 . 2 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = (𝑇‘(𝐴 · 𝐵)))
10 lnop0 31985 . . . . 5 (𝑇 ∈ LinOp → (𝑇‘0) = 0)
1110oveq2d 7447 . . . 4 (𝑇 ∈ LinOp → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = ((𝐴 · (𝑇𝐵)) + 0))
12113ad2ant1 1134 . . 3 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = ((𝐴 · (𝑇𝐵)) + 0))
13 lnopf 31878 . . . . . . . 8 (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ)
1413ffvelcdmda 7104 . . . . . . 7 ((𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝑇𝐵) ∈ ℋ)
15 hvmulcl 31032 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
1614, 15sylan2 593 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ)) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
17163impb 1115 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
18173com12 1124 . . . 4 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℋ)
19 ax-hvaddid 31023 . . . 4 ((𝐴 · (𝑇𝐵)) ∈ ℋ → ((𝐴 · (𝑇𝐵)) + 0) = (𝐴 · (𝑇𝐵)))
2018, 19syl 17 . . 3 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + 0) = (𝐴 · (𝑇𝐵)))
2112, 20eqtrd 2777 . 2 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = (𝐴 · (𝑇𝐵)))
224, 9, 213eqtr3d 2785 1 ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153  chba 30938   + cva 30939   · csm 30940  0c0v 30943  LinOpclo 30966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-hilex 31018  ax-hfvadd 31019  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvdistr2 31028  ax-hvmul0 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-hvsub 30990  df-lnop 31860
This theorem is referenced by:  lnopmuli  31991  homco2  31996
  Copyright terms: Public domain W3C validator