| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnopmul | Structured version Visualization version GIF version | ||
| Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnopmul | ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30965 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
| 2 | lnopl 31876 | . . . 4 ⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) | |
| 3 | 1, 2 | mpanr2 704 | . . 3 ⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) |
| 4 | 3 | 3impa 1109 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) |
| 5 | hvmulcl 30975 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 6 | ax-hvaddid 30966 | . . . . 5 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
| 8 | 7 | 3adant1 1130 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
| 9 | 8 | fveq2d 6830 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = (𝑇‘(𝐴 ·ℎ 𝐵))) |
| 10 | lnop0 31928 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) | |
| 11 | 10 | oveq2d 7369 | . . . 4 ⊢ (𝑇 ∈ LinOp → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ)) |
| 12 | 11 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ)) |
| 13 | lnopf 31821 | . . . . . . . 8 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
| 14 | 13 | ffvelcdmda 7022 | . . . . . . 7 ⊢ ((𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝑇‘𝐵) ∈ ℋ) |
| 15 | hvmulcl 30975 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) | |
| 16 | 14, 15 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ)) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
| 17 | 16 | 3impb 1114 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
| 18 | 17 | 3com12 1123 | . . . 4 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
| 19 | ax-hvaddid 30966 | . . . 4 ⊢ ((𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ) = (𝐴 ·ℎ (𝑇‘𝐵))) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| 21 | 12, 20 | eqtrd 2764 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| 22 | 4, 9, 21 | 3eqtr3d 2772 | 1 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℋchba 30881 +ℎ cva 30882 ·ℎ csm 30883 0ℎc0v 30886 LinOpclo 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-hilex 30961 ax-hfvadd 30962 ax-hvass 30964 ax-hv0cl 30965 ax-hvaddid 30966 ax-hfvmul 30967 ax-hvmulid 30968 ax-hvdistr2 30971 ax-hvmul0 30972 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-neg 11368 df-hvsub 30933 df-lnop 31803 |
| This theorem is referenced by: lnopmuli 31934 homco2 31939 |
| Copyright terms: Public domain | W3C validator |