![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopmul | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopmul | ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28553 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
2 | lnopl 29466 | . . . 4 ⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) | |
3 | 1, 2 | mpanr2 691 | . . 3 ⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) |
4 | 3 | 3impa 1090 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) |
5 | hvmulcl 28563 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvaddid 28554 | . . . . 5 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
8 | 7 | 3adant1 1110 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
9 | 8 | fveq2d 6497 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = (𝑇‘(𝐴 ·ℎ 𝐵))) |
10 | lnop0 29518 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) | |
11 | 10 | oveq2d 6986 | . . . 4 ⊢ (𝑇 ∈ LinOp → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ)) |
12 | 11 | 3ad2ant1 1113 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ)) |
13 | lnopf 29411 | . . . . . . . 8 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
14 | 13 | ffvelrnda 6670 | . . . . . . 7 ⊢ ((𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝑇‘𝐵) ∈ ℋ) |
15 | hvmulcl 28563 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) | |
16 | 14, 15 | sylan2 583 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ)) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
17 | 16 | 3impb 1095 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
18 | 17 | 3com12 1103 | . . . 4 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
19 | ax-hvaddid 28554 | . . . 4 ⊢ ((𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ) = (𝐴 ·ℎ (𝑇‘𝐵))) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ) = (𝐴 ·ℎ (𝑇‘𝐵))) |
21 | 12, 20 | eqtrd 2808 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
22 | 4, 9, 21 | 3eqtr3d 2816 | 1 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ‘cfv 6182 (class class class)co 6970 ℂcc 10327 ℋchba 28469 +ℎ cva 28470 ·ℎ csm 28471 0ℎc0v 28474 LinOpclo 28497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-hilex 28549 ax-hfvadd 28550 ax-hvass 28552 ax-hv0cl 28553 ax-hvaddid 28554 ax-hfvmul 28555 ax-hvmulid 28556 ax-hvdistr2 28559 ax-hvmul0 28560 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-po 5320 df-so 5321 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-er 8083 df-map 8202 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-ltxr 10473 df-sub 10666 df-neg 10667 df-hvsub 28521 df-lnop 29393 |
This theorem is referenced by: lnopmuli 29524 homco2 29529 |
Copyright terms: Public domain | W3C validator |