Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnopmul | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopmul | ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29361 | . . . 4 ⊢ 0ℎ ∈ ℋ | |
2 | lnopl 30272 | . . . 4 ⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) | |
3 | 1, 2 | mpanr2 701 | . . 3 ⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) |
4 | 3 | 3impa 1109 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ))) |
5 | hvmulcl 29371 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvaddid 29362 | . . . . 5 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
8 | 7 | 3adant1 1129 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
9 | 8 | fveq2d 6775 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = (𝑇‘(𝐴 ·ℎ 𝐵))) |
10 | lnop0 30324 | . . . . 5 ⊢ (𝑇 ∈ LinOp → (𝑇‘0ℎ) = 0ℎ) | |
11 | 10 | oveq2d 7287 | . . . 4 ⊢ (𝑇 ∈ LinOp → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ)) |
12 | 11 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ)) |
13 | lnopf 30217 | . . . . . . . 8 ⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | |
14 | 13 | ffvelrnda 6958 | . . . . . . 7 ⊢ ((𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝑇‘𝐵) ∈ ℋ) |
15 | hvmulcl 29371 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) | |
16 | 14, 15 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ)) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
17 | 16 | 3impb 1114 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ LinOp ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
18 | 17 | 3com12 1122 | . . . 4 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
19 | ax-hvaddid 29362 | . . . 4 ⊢ ((𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ) = (𝐴 ·ℎ (𝑇‘𝐵))) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ 0ℎ) = (𝐴 ·ℎ (𝑇‘𝐵))) |
21 | 12, 20 | eqtrd 2780 | . 2 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘0ℎ)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
22 | 4, 9, 21 | 3eqtr3d 2788 | 1 ⊢ ((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℋchba 29277 +ℎ cva 29278 ·ℎ csm 29279 0ℎc0v 29282 LinOpclo 29305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-hilex 29357 ax-hfvadd 29358 ax-hvass 29360 ax-hv0cl 29361 ax-hvaddid 29362 ax-hfvmul 29363 ax-hvmulid 29364 ax-hvdistr2 29367 ax-hvmul0 29368 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-sub 11207 df-neg 11208 df-hvsub 29329 df-lnop 30199 |
This theorem is referenced by: lnopmuli 30330 homco2 30335 |
Copyright terms: Public domain | W3C validator |