Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shsel1 | Structured version Visualization version GIF version |
Description: A subspace sum contains a member of one of its subspaces. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shsel1 | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shel 29802 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ ℋ) | |
2 | ax-hvaddid 29595 | . . . . 5 ⊢ (𝐶 ∈ ℋ → (𝐶 +ℎ 0ℎ) = 𝐶) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐶 ∈ 𝐴) → (𝐶 +ℎ 0ℎ) = 𝐶) |
4 | 3 | adantlr 712 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴) → (𝐶 +ℎ 0ℎ) = 𝐶) |
5 | sh0 29807 | . . . . . 6 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
6 | 5 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℎ ∈ 𝐵) |
7 | shsva 29911 | . . . . 5 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ((𝐶 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵) → (𝐶 +ℎ 0ℎ) ∈ (𝐴 +ℋ 𝐵))) | |
8 | 6, 7 | mpan2d 691 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐴 → (𝐶 +ℎ 0ℎ) ∈ (𝐴 +ℋ 𝐵))) |
9 | 8 | imp 407 | . . 3 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴) → (𝐶 +ℎ 0ℎ) ∈ (𝐴 +ℋ 𝐵)) |
10 | 4, 9 | eqeltrrd 2838 | . 2 ⊢ (((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ (𝐴 +ℋ 𝐵)) |
11 | 10 | ex 413 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐶 ∈ 𝐴 → 𝐶 ∈ (𝐴 +ℋ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7329 ℋchba 29510 +ℎ cva 29511 0ℎc0v 29515 Sℋ csh 29519 +ℋ cph 29522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-hilex 29590 ax-hfvadd 29591 ax-hvcom 29592 ax-hvass 29593 ax-hv0cl 29594 ax-hvaddid 29595 ax-hfvmul 29596 ax-hvmulid 29597 ax-hvdistr2 29600 ax-hvmul0 29601 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-ltxr 11107 df-sub 11300 df-neg 11301 df-grpo 29084 df-ablo 29136 df-hvsub 29562 df-sh 29798 df-shs 29899 |
This theorem is referenced by: shsel2 29913 shsvs 29914 shsub1 29915 shsel1i 29956 |
Copyright terms: Public domain | W3C validator |