Proof of Theorem pjssmii
| Step | Hyp | Ref
| Expression |
| 1 | | pjsslem.1 |
. . . . . 6
⊢ 𝐺 ∈
Cℋ |
| 2 | | pjidm.2 |
. . . . . 6
⊢ 𝐴 ∈ ℋ |
| 3 | 1, 2 | pjclii 31440 |
. . . . 5
⊢
((projℎ‘𝐺)‘𝐴) ∈ 𝐺 |
| 4 | | pjidm.1 |
. . . . . . 7
⊢ 𝐻 ∈
Cℋ |
| 5 | 4, 2 | pjclii 31440 |
. . . . . 6
⊢
((projℎ‘𝐻)‘𝐴) ∈ 𝐻 |
| 6 | | ssel 3977 |
. . . . . 6
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘𝐻)‘𝐴) ∈ 𝐻 →
((projℎ‘𝐻)‘𝐴) ∈ 𝐺)) |
| 7 | 5, 6 | mpi 20 |
. . . . 5
⊢ (𝐻 ⊆ 𝐺 →
((projℎ‘𝐻)‘𝐴) ∈ 𝐺) |
| 8 | 1 | chshii 31246 |
. . . . . 6
⊢ 𝐺 ∈
Sℋ |
| 9 | | shsubcl 31239 |
. . . . . 6
⊢ ((𝐺 ∈
Sℋ ∧ ((projℎ‘𝐺)‘𝐴) ∈ 𝐺 ∧ ((projℎ‘𝐻)‘𝐴) ∈ 𝐺) →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺) |
| 10 | 8, 9 | mp3an1 1450 |
. . . . 5
⊢
((((projℎ‘𝐺)‘𝐴) ∈ 𝐺 ∧ ((projℎ‘𝐻)‘𝐴) ∈ 𝐺) →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺) |
| 11 | 3, 7, 10 | sylancr 587 |
. . . 4
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺) |
| 12 | 4, 2, 1 | pjsslem 31698 |
. . . . 5
⊢
(((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) = (((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) |
| 13 | 4, 1 | chsscon3i 31480 |
. . . . . 6
⊢ (𝐻 ⊆ 𝐺 ↔ (⊥‘𝐺) ⊆ (⊥‘𝐻)) |
| 14 | 4 | choccli 31326 |
. . . . . . . 8
⊢
(⊥‘𝐻)
∈ Cℋ |
| 15 | 14, 2 | pjclii 31440 |
. . . . . . 7
⊢
((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) |
| 16 | 1 | choccli 31326 |
. . . . . . . . 9
⊢
(⊥‘𝐺)
∈ Cℋ |
| 17 | 16, 2 | pjclii 31440 |
. . . . . . . 8
⊢
((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐺) |
| 18 | | ssel 3977 |
. . . . . . . 8
⊢
((⊥‘𝐺)
⊆ (⊥‘𝐻)
→ (((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐺) →
((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻))) |
| 19 | 17, 18 | mpi 20 |
. . . . . . 7
⊢
((⊥‘𝐺)
⊆ (⊥‘𝐻)
→ ((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)) |
| 20 | 14 | chshii 31246 |
. . . . . . . 8
⊢
(⊥‘𝐻)
∈ Sℋ |
| 21 | | shsubcl 31239 |
. . . . . . . 8
⊢
(((⊥‘𝐻)
∈ Sℋ ∧
((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) ∧
((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)) →
(((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻)) |
| 22 | 20, 21 | mp3an1 1450 |
. . . . . . 7
⊢
((((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) ∧
((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)) →
(((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻)) |
| 23 | 15, 19, 22 | sylancr 587 |
. . . . . 6
⊢
((⊥‘𝐺)
⊆ (⊥‘𝐻)
→ (((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻)) |
| 24 | 13, 23 | sylbi 217 |
. . . . 5
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻)) |
| 25 | 12, 24 | eqeltrrid 2846 |
. . . 4
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻)) |
| 26 | 11, 25 | jca 511 |
. . 3
⊢ (𝐻 ⊆ 𝐺 →
((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺 ∧
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻))) |
| 27 | | elin 3967 |
. . . 4
⊢
((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (𝐺 ∩ (⊥‘𝐻)) ↔
((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺 ∧
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻))) |
| 28 | 1, 14 | chincli 31479 |
. . . . 5
⊢ (𝐺 ∩ (⊥‘𝐻)) ∈
Cℋ |
| 29 | 1, 2 | pjhclii 31441 |
. . . . . 6
⊢
((projℎ‘𝐺)‘𝐴) ∈ ℋ |
| 30 | 4, 2 | pjhclii 31441 |
. . . . . 6
⊢
((projℎ‘𝐻)‘𝐴) ∈ ℋ |
| 31 | 29, 30 | hvsubcli 31040 |
. . . . 5
⊢
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ ℋ |
| 32 | 28, 31 | pjchi 31451 |
. . . 4
⊢
((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (𝐺 ∩ (⊥‘𝐻)) ↔
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = (((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) |
| 33 | 27, 32 | bitr3i 277 |
. . 3
⊢
(((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺 ∧
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻)) ↔
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = (((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) |
| 34 | 26, 33 | sylib 218 |
. 2
⊢ (𝐻 ⊆ 𝐺 →
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = (((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) |
| 35 | 28, 29, 30 | pjsubii 31697 |
. . 3
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = (((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) −ℎ
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) |
| 36 | 28, 29 | pjhclii 31441 |
. . . . 5
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) ∈ ℋ |
| 37 | 28, 30 | pjhclii 31441 |
. . . . 5
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)) ∈ ℋ |
| 38 | 36, 37 | hvsubvali 31039 |
. . . 4
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) −ℎ
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) = (((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) +ℎ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)))) |
| 39 | | inss1 4237 |
. . . . . . 7
⊢ (𝐺 ∩ (⊥‘𝐻)) ⊆ 𝐺 |
| 40 | 28, 2, 1 | pjss2i 31699 |
. . . . . . 7
⊢ ((𝐺 ∩ (⊥‘𝐻)) ⊆ 𝐺 →
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) |
| 41 | 39, 40 | ax-mp 5 |
. . . . . 6
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
| 42 | 4 | chshii 31246 |
. . . . . . . . . . . 12
⊢ 𝐻 ∈
Sℋ |
| 43 | | shococss 31313 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈
Sℋ → 𝐻 ⊆ (⊥‘(⊥‘𝐻))) |
| 44 | 42, 43 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝐻 ⊆
(⊥‘(⊥‘𝐻)) |
| 45 | | inss2 4238 |
. . . . . . . . . . . 12
⊢ (𝐺 ∩ (⊥‘𝐻)) ⊆ (⊥‘𝐻) |
| 46 | 28, 14 | chsscon3i 31480 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∩ (⊥‘𝐻)) ⊆ (⊥‘𝐻) ↔
(⊥‘(⊥‘𝐻)) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))) |
| 47 | 45, 46 | mpbi 230 |
. . . . . . . . . . 11
⊢
(⊥‘(⊥‘𝐻)) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) |
| 48 | 44, 47 | sstri 3993 |
. . . . . . . . . 10
⊢ 𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) |
| 49 | 48, 5 | sselii 3980 |
. . . . . . . . 9
⊢
((projℎ‘𝐻)‘𝐴) ∈ (⊥‘(𝐺 ∩ (⊥‘𝐻))) |
| 50 | 28, 30 | pjoc2i 31457 |
. . . . . . . . 9
⊢
(((projℎ‘𝐻)‘𝐴) ∈ (⊥‘(𝐺 ∩ (⊥‘𝐻))) ↔
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)) = 0ℎ) |
| 51 | 49, 50 | mpbi 230 |
. . . . . . . 8
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)) = 0ℎ |
| 52 | 51 | oveq2i 7442 |
. . . . . . 7
⊢ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) = (-1 ·ℎ
0ℎ) |
| 53 | | neg1cn 12380 |
. . . . . . . 8
⊢ -1 ∈
ℂ |
| 54 | | hvmul0 31043 |
. . . . . . . 8
⊢ (-1
∈ ℂ → (-1 ·ℎ
0ℎ) = 0ℎ) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . . 7
⊢ (-1
·ℎ 0ℎ) =
0ℎ |
| 56 | 52, 55 | eqtri 2765 |
. . . . . 6
⊢ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) = 0ℎ |
| 57 | 41, 56 | oveq12i 7443 |
. . . . 5
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) +ℎ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)))) = (((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) +ℎ
0ℎ) |
| 58 | 28, 2 | pjhclii 31441 |
. . . . . 6
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) ∈ ℋ |
| 59 | | ax-hvaddid 31023 |
. . . . . 6
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) ∈ ℋ →
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) +ℎ 0ℎ)
= ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) |
| 60 | 58, 59 | ax-mp 5 |
. . . . 5
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) +ℎ 0ℎ)
= ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
| 61 | 57, 60 | eqtri 2765 |
. . . 4
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) +ℎ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)))) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
| 62 | 38, 61 | eqtri 2765 |
. . 3
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) −ℎ
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
| 63 | 35, 62 | eqtri 2765 |
. 2
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
| 64 | 34, 63 | eqtr3di 2792 |
1
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) |