Proof of Theorem pjssmii
Step | Hyp | Ref
| Expression |
1 | | pjsslem.1 |
. . . . . 6
⊢ 𝐺 ∈
Cℋ |
2 | | pjidm.2 |
. . . . . 6
⊢ 𝐴 ∈ ℋ |
3 | 1, 2 | pjclii 29684 |
. . . . 5
⊢
((projℎ‘𝐺)‘𝐴) ∈ 𝐺 |
4 | | pjidm.1 |
. . . . . . 7
⊢ 𝐻 ∈
Cℋ |
5 | 4, 2 | pjclii 29684 |
. . . . . 6
⊢
((projℎ‘𝐻)‘𝐴) ∈ 𝐻 |
6 | | ssel 3910 |
. . . . . 6
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘𝐻)‘𝐴) ∈ 𝐻 →
((projℎ‘𝐻)‘𝐴) ∈ 𝐺)) |
7 | 5, 6 | mpi 20 |
. . . . 5
⊢ (𝐻 ⊆ 𝐺 →
((projℎ‘𝐻)‘𝐴) ∈ 𝐺) |
8 | 1 | chshii 29490 |
. . . . . 6
⊢ 𝐺 ∈
Sℋ |
9 | | shsubcl 29483 |
. . . . . 6
⊢ ((𝐺 ∈
Sℋ ∧ ((projℎ‘𝐺)‘𝐴) ∈ 𝐺 ∧ ((projℎ‘𝐻)‘𝐴) ∈ 𝐺) →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺) |
10 | 8, 9 | mp3an1 1446 |
. . . . 5
⊢
((((projℎ‘𝐺)‘𝐴) ∈ 𝐺 ∧ ((projℎ‘𝐻)‘𝐴) ∈ 𝐺) →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺) |
11 | 3, 7, 10 | sylancr 586 |
. . . 4
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺) |
12 | 4, 2, 1 | pjsslem 29942 |
. . . . 5
⊢
(((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) = (((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) |
13 | 4, 1 | chsscon3i 29724 |
. . . . . 6
⊢ (𝐻 ⊆ 𝐺 ↔ (⊥‘𝐺) ⊆ (⊥‘𝐻)) |
14 | 4 | choccli 29570 |
. . . . . . . 8
⊢
(⊥‘𝐻)
∈ Cℋ |
15 | 14, 2 | pjclii 29684 |
. . . . . . 7
⊢
((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) |
16 | 1 | choccli 29570 |
. . . . . . . . 9
⊢
(⊥‘𝐺)
∈ Cℋ |
17 | 16, 2 | pjclii 29684 |
. . . . . . . 8
⊢
((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐺) |
18 | | ssel 3910 |
. . . . . . . 8
⊢
((⊥‘𝐺)
⊆ (⊥‘𝐻)
→ (((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐺) →
((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻))) |
19 | 17, 18 | mpi 20 |
. . . . . . 7
⊢
((⊥‘𝐺)
⊆ (⊥‘𝐻)
→ ((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)) |
20 | 14 | chshii 29490 |
. . . . . . . 8
⊢
(⊥‘𝐻)
∈ Sℋ |
21 | | shsubcl 29483 |
. . . . . . . 8
⊢
(((⊥‘𝐻)
∈ Sℋ ∧
((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) ∧
((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)) →
(((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻)) |
22 | 20, 21 | mp3an1 1446 |
. . . . . . 7
⊢
((((projℎ‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) ∧
((projℎ‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)) →
(((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻)) |
23 | 15, 19, 22 | sylancr 586 |
. . . . . 6
⊢
((⊥‘𝐺)
⊆ (⊥‘𝐻)
→ (((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻)) |
24 | 13, 23 | sylbi 216 |
. . . . 5
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘(⊥‘𝐻))‘𝐴) −ℎ
((projℎ‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻)) |
25 | 12, 24 | eqeltrrid 2844 |
. . . 4
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻)) |
26 | 11, 25 | jca 511 |
. . 3
⊢ (𝐻 ⊆ 𝐺 →
((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺 ∧
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻))) |
27 | | elin 3899 |
. . . 4
⊢
((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (𝐺 ∩ (⊥‘𝐻)) ↔
((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺 ∧
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻))) |
28 | 1, 14 | chincli 29723 |
. . . . 5
⊢ (𝐺 ∩ (⊥‘𝐻)) ∈
Cℋ |
29 | 1, 2 | pjhclii 29685 |
. . . . . 6
⊢
((projℎ‘𝐺)‘𝐴) ∈ ℋ |
30 | 4, 2 | pjhclii 29685 |
. . . . . 6
⊢
((projℎ‘𝐻)‘𝐴) ∈ ℋ |
31 | 29, 30 | hvsubcli 29284 |
. . . . 5
⊢
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ ℋ |
32 | 28, 31 | pjchi 29695 |
. . . 4
⊢
((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (𝐺 ∩ (⊥‘𝐻)) ↔
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = (((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) |
33 | 27, 32 | bitr3i 276 |
. . 3
⊢
(((((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ 𝐺 ∧
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) ∈ (⊥‘𝐻)) ↔
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = (((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) |
34 | 26, 33 | sylib 217 |
. 2
⊢ (𝐻 ⊆ 𝐺 →
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = (((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) |
35 | 28, 29, 30 | pjsubii 29941 |
. . 3
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = (((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) −ℎ
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) |
36 | 28, 29 | pjhclii 29685 |
. . . . 5
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) ∈ ℋ |
37 | 28, 30 | pjhclii 29685 |
. . . . 5
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)) ∈ ℋ |
38 | 36, 37 | hvsubvali 29283 |
. . . 4
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) −ℎ
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) = (((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) +ℎ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)))) |
39 | | inss1 4159 |
. . . . . . 7
⊢ (𝐺 ∩ (⊥‘𝐻)) ⊆ 𝐺 |
40 | 28, 2, 1 | pjss2i 29943 |
. . . . . . 7
⊢ ((𝐺 ∩ (⊥‘𝐻)) ⊆ 𝐺 →
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) |
41 | 39, 40 | ax-mp 5 |
. . . . . 6
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
42 | 4 | chshii 29490 |
. . . . . . . . . . . 12
⊢ 𝐻 ∈
Sℋ |
43 | | shococss 29557 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈
Sℋ → 𝐻 ⊆ (⊥‘(⊥‘𝐻))) |
44 | 42, 43 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝐻 ⊆
(⊥‘(⊥‘𝐻)) |
45 | | inss2 4160 |
. . . . . . . . . . . 12
⊢ (𝐺 ∩ (⊥‘𝐻)) ⊆ (⊥‘𝐻) |
46 | 28, 14 | chsscon3i 29724 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∩ (⊥‘𝐻)) ⊆ (⊥‘𝐻) ↔
(⊥‘(⊥‘𝐻)) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))) |
47 | 45, 46 | mpbi 229 |
. . . . . . . . . . 11
⊢
(⊥‘(⊥‘𝐻)) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) |
48 | 44, 47 | sstri 3926 |
. . . . . . . . . 10
⊢ 𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))) |
49 | 48, 5 | sselii 3914 |
. . . . . . . . 9
⊢
((projℎ‘𝐻)‘𝐴) ∈ (⊥‘(𝐺 ∩ (⊥‘𝐻))) |
50 | 28, 30 | pjoc2i 29701 |
. . . . . . . . 9
⊢
(((projℎ‘𝐻)‘𝐴) ∈ (⊥‘(𝐺 ∩ (⊥‘𝐻))) ↔
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)) = 0ℎ) |
51 | 49, 50 | mpbi 229 |
. . . . . . . 8
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)) = 0ℎ |
52 | 51 | oveq2i 7266 |
. . . . . . 7
⊢ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) = (-1 ·ℎ
0ℎ) |
53 | | neg1cn 12017 |
. . . . . . . 8
⊢ -1 ∈
ℂ |
54 | | hvmul0 29287 |
. . . . . . . 8
⊢ (-1
∈ ℂ → (-1 ·ℎ
0ℎ) = 0ℎ) |
55 | 53, 54 | ax-mp 5 |
. . . . . . 7
⊢ (-1
·ℎ 0ℎ) =
0ℎ |
56 | 52, 55 | eqtri 2766 |
. . . . . 6
⊢ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) = 0ℎ |
57 | 41, 56 | oveq12i 7267 |
. . . . 5
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) +ℎ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)))) = (((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) +ℎ
0ℎ) |
58 | 28, 2 | pjhclii 29685 |
. . . . . 6
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) ∈ ℋ |
59 | | ax-hvaddid 29267 |
. . . . . 6
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) ∈ ℋ →
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) +ℎ 0ℎ)
= ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) |
60 | 58, 59 | ax-mp 5 |
. . . . 5
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) +ℎ 0ℎ)
= ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
61 | 57, 60 | eqtri 2766 |
. . . 4
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) +ℎ (-1
·ℎ ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴)))) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
62 | 38, 61 | eqtri 2766 |
. . 3
⊢
(((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐺)‘𝐴)) −ℎ
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘((projℎ‘𝐻)‘𝐴))) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
63 | 35, 62 | eqtri 2766 |
. 2
⊢
((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴))) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) |
64 | 34, 63 | eqtr3di 2794 |
1
⊢ (𝐻 ⊆ 𝐺 →
(((projℎ‘𝐺)‘𝐴) −ℎ
((projℎ‘𝐻)‘𝐴)) = ((projℎ‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)) |