HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjssmii Structured version   Visualization version   GIF version

Theorem pjssmii 28999
Description: Projection meet property. Remark in [Kalmbach] p. 66. Also Theorem 4.5(i)->(iv) of [Beran] p. 112. (Contributed by NM, 31-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjidm.1 𝐻C
pjidm.2 𝐴 ∈ ℋ
pjsslem.1 𝐺C
Assertion
Ref Expression
pjssmii (𝐻𝐺 → (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴))

Proof of Theorem pjssmii
StepHypRef Expression
1 pjsslem.1 . . . . 5 𝐺C
2 pjidm.1 . . . . . 6 𝐻C
32choccli 28625 . . . . 5 (⊥‘𝐻) ∈ C
41, 3chincli 28778 . . . 4 (𝐺 ∩ (⊥‘𝐻)) ∈ C
5 pjidm.2 . . . . 5 𝐴 ∈ ℋ
61, 5pjhclii 28740 . . . 4 ((proj𝐺)‘𝐴) ∈ ℋ
72, 5pjhclii 28740 . . . 4 ((proj𝐻)‘𝐴) ∈ ℋ
84, 6, 7pjsubii 28996 . . 3 ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘(((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴))) = (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) − ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴)))
94, 6pjhclii 28740 . . . . 5 ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) ∈ ℋ
104, 7pjhclii 28740 . . . . 5 ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴)) ∈ ℋ
119, 10hvsubvali 28336 . . . 4 (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) − ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴))) = (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) + (-1 · ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴))))
12 inss1 3994 . . . . . . 7 (𝐺 ∩ (⊥‘𝐻)) ⊆ 𝐺
134, 5, 1pjss2i 28998 . . . . . . 7 ((𝐺 ∩ (⊥‘𝐻)) ⊆ 𝐺 → ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴))
1412, 13ax-mp 5 . . . . . 6 ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)
152chshii 28543 . . . . . . . . . . . 12 𝐻S
16 shococss 28612 . . . . . . . . . . . 12 (𝐻S𝐻 ⊆ (⊥‘(⊥‘𝐻)))
1715, 16ax-mp 5 . . . . . . . . . . 11 𝐻 ⊆ (⊥‘(⊥‘𝐻))
18 inss2 3995 . . . . . . . . . . . 12 (𝐺 ∩ (⊥‘𝐻)) ⊆ (⊥‘𝐻)
194, 3chsscon3i 28779 . . . . . . . . . . . 12 ((𝐺 ∩ (⊥‘𝐻)) ⊆ (⊥‘𝐻) ↔ (⊥‘(⊥‘𝐻)) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻))))
2018, 19mpbi 221 . . . . . . . . . . 11 (⊥‘(⊥‘𝐻)) ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
2117, 20sstri 3772 . . . . . . . . . 10 𝐻 ⊆ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
222, 5pjclii 28739 . . . . . . . . . 10 ((proj𝐻)‘𝐴) ∈ 𝐻
2321, 22sselii 3760 . . . . . . . . 9 ((proj𝐻)‘𝐴) ∈ (⊥‘(𝐺 ∩ (⊥‘𝐻)))
244, 7pjoc2i 28756 . . . . . . . . 9 (((proj𝐻)‘𝐴) ∈ (⊥‘(𝐺 ∩ (⊥‘𝐻))) ↔ ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴)) = 0)
2523, 24mpbi 221 . . . . . . . 8 ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴)) = 0
2625oveq2i 6855 . . . . . . 7 (-1 · ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴))) = (-1 · 0)
27 neg1cn 11395 . . . . . . . 8 -1 ∈ ℂ
28 hvmul0 28340 . . . . . . . 8 (-1 ∈ ℂ → (-1 · 0) = 0)
2927, 28ax-mp 5 . . . . . . 7 (-1 · 0) = 0
3026, 29eqtri 2787 . . . . . 6 (-1 · ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴))) = 0
3114, 30oveq12i 6856 . . . . 5 (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) + (-1 · ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴)))) = (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) + 0)
324, 5pjhclii 28740 . . . . . 6 ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) ∈ ℋ
33 ax-hvaddid 28320 . . . . . 6 (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) ∈ ℋ → (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) + 0) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴))
3432, 33ax-mp 5 . . . . 5 (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴) + 0) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)
3531, 34eqtri 2787 . . . 4 (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) + (-1 · ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴)))) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)
3611, 35eqtri 2787 . . 3 (((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐺)‘𝐴)) − ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘((proj𝐻)‘𝐴))) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)
378, 36eqtri 2787 . 2 ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘(((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴))) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴)
381, 5pjclii 28739 . . . . 5 ((proj𝐺)‘𝐴) ∈ 𝐺
39 ssel 3757 . . . . . 6 (𝐻𝐺 → (((proj𝐻)‘𝐴) ∈ 𝐻 → ((proj𝐻)‘𝐴) ∈ 𝐺))
4022, 39mpi 20 . . . . 5 (𝐻𝐺 → ((proj𝐻)‘𝐴) ∈ 𝐺)
411chshii 28543 . . . . . 6 𝐺S
42 shsubcl 28536 . . . . . 6 ((𝐺S ∧ ((proj𝐺)‘𝐴) ∈ 𝐺 ∧ ((proj𝐻)‘𝐴) ∈ 𝐺) → (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ 𝐺)
4341, 42mp3an1 1572 . . . . 5 ((((proj𝐺)‘𝐴) ∈ 𝐺 ∧ ((proj𝐻)‘𝐴) ∈ 𝐺) → (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ 𝐺)
4438, 40, 43sylancr 581 . . . 4 (𝐻𝐺 → (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ 𝐺)
452, 5, 1pjsslem 28997 . . . . 5 (((proj‘(⊥‘𝐻))‘𝐴) − ((proj‘(⊥‘𝐺))‘𝐴)) = (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴))
462, 1chsscon3i 28779 . . . . . 6 (𝐻𝐺 ↔ (⊥‘𝐺) ⊆ (⊥‘𝐻))
473, 5pjclii 28739 . . . . . . 7 ((proj‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻)
481choccli 28625 . . . . . . . . 9 (⊥‘𝐺) ∈ C
4948, 5pjclii 28739 . . . . . . . 8 ((proj‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐺)
50 ssel 3757 . . . . . . . 8 ((⊥‘𝐺) ⊆ (⊥‘𝐻) → (((proj‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐺) → ((proj‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)))
5149, 50mpi 20 . . . . . . 7 ((⊥‘𝐺) ⊆ (⊥‘𝐻) → ((proj‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻))
523chshii 28543 . . . . . . . 8 (⊥‘𝐻) ∈ S
53 shsubcl 28536 . . . . . . . 8 (((⊥‘𝐻) ∈ S ∧ ((proj‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) ∧ ((proj‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)) → (((proj‘(⊥‘𝐻))‘𝐴) − ((proj‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻))
5452, 53mp3an1 1572 . . . . . . 7 ((((proj‘(⊥‘𝐻))‘𝐴) ∈ (⊥‘𝐻) ∧ ((proj‘(⊥‘𝐺))‘𝐴) ∈ (⊥‘𝐻)) → (((proj‘(⊥‘𝐻))‘𝐴) − ((proj‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻))
5547, 51, 54sylancr 581 . . . . . 6 ((⊥‘𝐺) ⊆ (⊥‘𝐻) → (((proj‘(⊥‘𝐻))‘𝐴) − ((proj‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻))
5646, 55sylbi 208 . . . . 5 (𝐻𝐺 → (((proj‘(⊥‘𝐻))‘𝐴) − ((proj‘(⊥‘𝐺))‘𝐴)) ∈ (⊥‘𝐻))
5745, 56syl5eqelr 2849 . . . 4 (𝐻𝐺 → (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ (⊥‘𝐻))
5844, 57jca 507 . . 3 (𝐻𝐺 → ((((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ 𝐺 ∧ (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ (⊥‘𝐻)))
59 elin 3960 . . . 4 ((((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ (𝐺 ∩ (⊥‘𝐻)) ↔ ((((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ 𝐺 ∧ (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ (⊥‘𝐻)))
606, 7hvsubcli 28337 . . . . 5 (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ ℋ
614, 60pjchi 28750 . . . 4 ((((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ (𝐺 ∩ (⊥‘𝐻)) ↔ ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘(((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴))) = (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)))
6259, 61bitr3i 268 . . 3 (((((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ 𝐺 ∧ (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) ∈ (⊥‘𝐻)) ↔ ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘(((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴))) = (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)))
6358, 62sylib 209 . 2 (𝐻𝐺 → ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘(((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴))) = (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)))
6437, 63syl5reqr 2814 1 (𝐻𝐺 → (((proj𝐺)‘𝐴) − ((proj𝐻)‘𝐴)) = ((proj‘(𝐺 ∩ (⊥‘𝐻)))‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  cin 3733  wss 3734  cfv 6070  (class class class)co 6844  cc 10189  1c1 10192  -cneg 10523  chba 28235   + cva 28236   · csm 28237  0c0v 28240   cmv 28241   S csh 28244   C cch 28245  cort 28246  projcpjh 28253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cc 9512  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269  ax-addf 10270  ax-mulf 10271  ax-hilex 28315  ax-hfvadd 28316  ax-hvcom 28317  ax-hvass 28318  ax-hv0cl 28319  ax-hvaddid 28320  ax-hfvmul 28321  ax-hvmulid 28322  ax-hvmulass 28323  ax-hvdistr1 28324  ax-hvdistr2 28325  ax-hvmul0 28326  ax-hfi 28395  ax-his1 28398  ax-his2 28399  ax-his3 28400  ax-his4 28401  ax-hcompl 28518
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-omul 7771  df-er 7949  df-map 8064  df-pm 8065  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-fi 8526  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-acn 9021  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-5 11340  df-6 11341  df-7 11342  df-8 11343  df-9 11344  df-n0 11541  df-z 11627  df-dec 11744  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12149  df-xadd 12150  df-xmul 12151  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-rlim 14508  df-sum 14705  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-starv 16232  df-sca 16233  df-vsca 16234  df-ip 16235  df-tset 16236  df-ple 16237  df-ds 16239  df-unif 16240  df-hom 16241  df-cco 16242  df-rest 16352  df-topn 16353  df-0g 16371  df-gsum 16372  df-topgen 16373  df-pt 16374  df-prds 16377  df-xrs 16431  df-qtop 16436  df-imas 16437  df-xps 16439  df-mre 16515  df-mrc 16516  df-acs 16518  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-mulg 17811  df-cntz 18016  df-cmn 18464  df-psmet 20014  df-xmet 20015  df-met 20016  df-bl 20017  df-mopn 20018  df-fbas 20019  df-fg 20020  df-cnfld 20023  df-top 20981  df-topon 20998  df-topsp 21020  df-bases 21033  df-cld 21106  df-ntr 21107  df-cls 21108  df-nei 21185  df-cn 21314  df-cnp 21315  df-lm 21316  df-haus 21402  df-tx 21648  df-hmeo 21841  df-fil 21932  df-fm 22024  df-flim 22025  df-flf 22026  df-xms 22407  df-ms 22408  df-tms 22409  df-cfil 23335  df-cau 23336  df-cmet 23337  df-grpo 27807  df-gid 27808  df-ginv 27809  df-gdiv 27810  df-ablo 27859  df-vc 27873  df-nv 27906  df-va 27909  df-ba 27910  df-sm 27911  df-0v 27912  df-vs 27913  df-nmcv 27914  df-ims 27915  df-dip 28015  df-ssp 28036  df-ph 28127  df-cbn 28178  df-hnorm 28284  df-hba 28285  df-hvsub 28287  df-hlim 28288  df-hcau 28289  df-sh 28523  df-ch 28537  df-oc 28568  df-ch0 28569  df-shs 28626  df-pjh 28713
This theorem is referenced by:  pjcji  29002  pjssmi  29483
  Copyright terms: Public domain W3C validator