HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnmuli Structured version   Visualization version   GIF version

Theorem lnfnmuli 31275
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfnmuli ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))

Proof of Theorem lnfnmuli
StepHypRef Expression
1 ax-hv0cl 30234 . . 3 0 ∈ ℋ
2 lnfnl.1 . . . 4 𝑇 ∈ LinFn
32lnfnli 31271 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
41, 3mp3an3 1451 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
5 hvmulcl 30244 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
6 ax-hvaddid 30235 . . . 4 ((𝐴 · 𝐵) ∈ ℋ → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
75, 6syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
87fveq2d 6892 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = (𝑇‘(𝐴 · 𝐵)))
92lnfn0i 31273 . . . 4 (𝑇‘0) = 0
109oveq2i 7415 . . 3 ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = ((𝐴 · (𝑇𝐵)) + 0)
112lnfnfi 31272 . . . . . 6 𝑇: ℋ⟶ℂ
1211ffvelcdmi 7081 . . . . 5 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℂ)
13 mulcl 11190 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ ℂ) → (𝐴 · (𝑇𝐵)) ∈ ℂ)
1412, 13sylan2 594 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℂ)
1514addridd 11410 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + 0) = (𝐴 · (𝑇𝐵)))
1610, 15eqtrid 2785 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = (𝐴 · (𝑇𝐵)))
174, 8, 163eqtr3d 2781 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cfv 6540  (class class class)co 7404  cc 11104  0cc0 11106   + caddc 11109   · cmul 11111  chba 30150   + cva 30151   · csm 30152  0c0v 30155  LinFnclf 30185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-hilex 30230  ax-hv0cl 30234  ax-hvaddid 30235  ax-hfvmul 30236  ax-hvmulid 30237
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-ltxr 11249  df-sub 11442  df-lnfn 31079
This theorem is referenced by:  lnfnaddmuli  31276  lnfnmul  31279  nmbdfnlbi  31280  nmcfnexi  31282  nmcfnlbi  31283  nlelshi  31291  riesz3i  31293
  Copyright terms: Public domain W3C validator