Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnfnmuli | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfnmuli | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29266 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnli 30303 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ))) |
4 | 1, 3 | mp3an3 1448 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ))) |
5 | hvmulcl 29276 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvaddid 29267 | . . . 4 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
8 | 7 | fveq2d 6760 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = (𝑇‘(𝐴 ·ℎ 𝐵))) |
9 | 2 | lnfn0i 30305 | . . . 4 ⊢ (𝑇‘0ℎ) = 0 |
10 | 9 | oveq2i 7266 | . . 3 ⊢ ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + 0) |
11 | 2 | lnfnfi 30304 | . . . . . 6 ⊢ 𝑇: ℋ⟶ℂ |
12 | 11 | ffvelrni 6942 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℂ) |
13 | mulcl 10886 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℂ) → (𝐴 · (𝑇‘𝐵)) ∈ ℂ) | |
14 | 12, 13 | sylan2 592 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇‘𝐵)) ∈ ℂ) |
15 | 14 | addid1d 11105 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇‘𝐵)) + 0) = (𝐴 · (𝑇‘𝐵))) |
16 | 10, 15 | syl5eq 2791 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ)) = (𝐴 · (𝑇‘𝐵))) |
17 | 4, 8, 16 | 3eqtr3d 2786 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 · cmul 10807 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 0ℎc0v 29187 LinFnclf 29217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hilex 29262 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-lnfn 30111 |
This theorem is referenced by: lnfnaddmuli 30308 lnfnmul 30311 nmbdfnlbi 30312 nmcfnexi 30314 nmcfnlbi 30315 nlelshi 30323 riesz3i 30325 |
Copyright terms: Public domain | W3C validator |