![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnmuli | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfnmuli | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30234 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnli 31271 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ))) |
4 | 1, 3 | mp3an3 1451 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ))) |
5 | hvmulcl 30244 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvaddid 30235 | . . . 4 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
8 | 7 | fveq2d 6892 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = (𝑇‘(𝐴 ·ℎ 𝐵))) |
9 | 2 | lnfn0i 31273 | . . . 4 ⊢ (𝑇‘0ℎ) = 0 |
10 | 9 | oveq2i 7415 | . . 3 ⊢ ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + 0) |
11 | 2 | lnfnfi 31272 | . . . . . 6 ⊢ 𝑇: ℋ⟶ℂ |
12 | 11 | ffvelcdmi 7081 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℂ) |
13 | mulcl 11190 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℂ) → (𝐴 · (𝑇‘𝐵)) ∈ ℂ) | |
14 | 12, 13 | sylan2 594 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇‘𝐵)) ∈ ℂ) |
15 | 14 | addridd 11410 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇‘𝐵)) + 0) = (𝐴 · (𝑇‘𝐵))) |
16 | 10, 15 | eqtrid 2785 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ)) = (𝐴 · (𝑇‘𝐵))) |
17 | 4, 8, 16 | 3eqtr3d 2781 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7404 ℂcc 11104 0cc0 11106 + caddc 11109 · cmul 11111 ℋchba 30150 +ℎ cva 30151 ·ℎ csm 30152 0ℎc0v 30155 LinFnclf 30185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-hilex 30230 ax-hv0cl 30234 ax-hvaddid 30235 ax-hfvmul 30236 ax-hvmulid 30237 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-lnfn 31079 |
This theorem is referenced by: lnfnaddmuli 31276 lnfnmul 31279 nmbdfnlbi 31280 nmcfnexi 31282 nmcfnlbi 31283 nlelshi 31291 riesz3i 31293 |
Copyright terms: Public domain | W3C validator |