![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnmuli | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | β’ π β LinFn |
Ref | Expression |
---|---|
lnfnmuli | β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ Β·β π΅)) = (π΄ Β· (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30826 | . . 3 β’ 0β β β | |
2 | lnfnl.1 | . . . 4 β’ π β LinFn | |
3 | 2 | lnfnli 31863 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ 0β β β) β (πβ((π΄ Β·β π΅) +β 0β)) = ((π΄ Β· (πβπ΅)) + (πβ0β))) |
4 | 1, 3 | mp3an3 1447 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ((π΄ Β·β π΅) +β 0β)) = ((π΄ Β· (πβπ΅)) + (πβ0β))) |
5 | hvmulcl 30836 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β·β π΅) β β) | |
6 | ax-hvaddid 30827 | . . . 4 β’ ((π΄ Β·β π΅) β β β ((π΄ Β·β π΅) +β 0β) = (π΄ Β·β π΅)) | |
7 | 5, 6 | syl 17 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β·β π΅) +β 0β) = (π΄ Β·β π΅)) |
8 | 7 | fveq2d 6901 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ((π΄ Β·β π΅) +β 0β)) = (πβ(π΄ Β·β π΅))) |
9 | 2 | lnfn0i 31865 | . . . 4 β’ (πβ0β) = 0 |
10 | 9 | oveq2i 7431 | . . 3 β’ ((π΄ Β· (πβπ΅)) + (πβ0β)) = ((π΄ Β· (πβπ΅)) + 0) |
11 | 2 | lnfnfi 31864 | . . . . . 6 β’ π: ββΆβ |
12 | 11 | ffvelcdmi 7093 | . . . . 5 β’ (π΅ β β β (πβπ΅) β β) |
13 | mulcl 11223 | . . . . 5 β’ ((π΄ β β β§ (πβπ΅) β β) β (π΄ Β· (πβπ΅)) β β) | |
14 | 12, 13 | sylan2 592 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β· (πβπ΅)) β β) |
15 | 14 | addridd 11445 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β· (πβπ΅)) + 0) = (π΄ Β· (πβπ΅))) |
16 | 10, 15 | eqtrid 2780 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β· (πβπ΅)) + (πβ0β)) = (π΄ Β· (πβπ΅))) |
17 | 4, 8, 16 | 3eqtr3d 2776 | 1 β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ Β·β π΅)) = (π΄ Β· (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 βcfv 6548 (class class class)co 7420 βcc 11137 0cc0 11139 + caddc 11142 Β· cmul 11144 βchba 30742 +β cva 30743 Β·β csm 30744 0βc0v 30747 LinFnclf 30777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-hilex 30822 ax-hv0cl 30826 ax-hvaddid 30827 ax-hfvmul 30828 ax-hvmulid 30829 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-sub 11477 df-lnfn 31671 |
This theorem is referenced by: lnfnaddmuli 31868 lnfnmul 31871 nmbdfnlbi 31872 nmcfnexi 31874 nmcfnlbi 31875 nlelshi 31883 riesz3i 31885 |
Copyright terms: Public domain | W3C validator |