Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnmuli Structured version   Visualization version   GIF version

Theorem lnfnmuli 29834
 Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfnmuli ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))

Proof of Theorem lnfnmuli
StepHypRef Expression
1 ax-hv0cl 28793 . . 3 0 ∈ ℋ
2 lnfnl.1 . . . 4 𝑇 ∈ LinFn
32lnfnli 29830 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
41, 3mp3an3 1447 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
5 hvmulcl 28803 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
6 ax-hvaddid 28794 . . . 4 ((𝐴 · 𝐵) ∈ ℋ → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
75, 6syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
87fveq2d 6649 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = (𝑇‘(𝐴 · 𝐵)))
92lnfn0i 29832 . . . 4 (𝑇‘0) = 0
109oveq2i 7146 . . 3 ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = ((𝐴 · (𝑇𝐵)) + 0)
112lnfnfi 29831 . . . . . 6 𝑇: ℋ⟶ℂ
1211ffvelrni 6827 . . . . 5 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℂ)
13 mulcl 10612 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ ℂ) → (𝐴 · (𝑇𝐵)) ∈ ℂ)
1412, 13sylan2 595 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℂ)
1514addid1d 10831 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + 0) = (𝐴 · (𝑇𝐵)))
1610, 15syl5eq 2845 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = (𝐴 · (𝑇𝐵)))
174, 8, 163eqtr3d 2841 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ‘cfv 6324  (class class class)co 7135  ℂcc 10526  0cc0 10528   + caddc 10531   · cmul 10533   ℋchba 28709   +ℎ cva 28710   ·ℎ csm 28711  0ℎc0v 28714  LinFnclf 28744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-hilex 28789  ax-hv0cl 28793  ax-hvaddid 28794  ax-hfvmul 28795  ax-hvmulid 28796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10668  df-mnf 10669  df-ltxr 10671  df-sub 10863  df-lnfn 29638 This theorem is referenced by:  lnfnaddmuli  29835  lnfnmul  29838  nmbdfnlbi  29839  nmcfnexi  29841  nmcfnlbi  29842  nlelshi  29850  riesz3i  29852
 Copyright terms: Public domain W3C validator