Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnfnmuli | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfnmuli | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29084 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnli 30121 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ))) |
4 | 1, 3 | mp3an3 1452 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ))) |
5 | hvmulcl 29094 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvaddid 29085 | . . . 4 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
8 | 7 | fveq2d 6721 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = (𝑇‘(𝐴 ·ℎ 𝐵))) |
9 | 2 | lnfn0i 30123 | . . . 4 ⊢ (𝑇‘0ℎ) = 0 |
10 | 9 | oveq2i 7224 | . . 3 ⊢ ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + 0) |
11 | 2 | lnfnfi 30122 | . . . . . 6 ⊢ 𝑇: ℋ⟶ℂ |
12 | 11 | ffvelrni 6903 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℂ) |
13 | mulcl 10813 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℂ) → (𝐴 · (𝑇‘𝐵)) ∈ ℂ) | |
14 | 12, 13 | sylan2 596 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇‘𝐵)) ∈ ℂ) |
15 | 14 | addid1d 11032 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇‘𝐵)) + 0) = (𝐴 · (𝑇‘𝐵))) |
16 | 10, 15 | syl5eq 2790 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ)) = (𝐴 · (𝑇‘𝐵))) |
17 | 4, 8, 16 | 3eqtr3d 2785 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 + caddc 10732 · cmul 10734 ℋchba 29000 +ℎ cva 29001 ·ℎ csm 29002 0ℎc0v 29005 LinFnclf 29035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-hilex 29080 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 df-lnfn 29929 |
This theorem is referenced by: lnfnaddmuli 30126 lnfnmul 30129 nmbdfnlbi 30130 nmcfnexi 30132 nmcfnlbi 30133 nlelshi 30141 riesz3i 30143 |
Copyright terms: Public domain | W3C validator |