![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnmuli | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfnmuli | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28553 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnli 29592 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ))) |
4 | 1, 3 | mp3an3 1429 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ))) |
5 | hvmulcl 28563 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
6 | ax-hvaddid 28554 | . . . 4 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ 0ℎ) = (𝐴 ·ℎ 𝐵)) |
8 | 7 | fveq2d 6497 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 0ℎ)) = (𝑇‘(𝐴 ·ℎ 𝐵))) |
9 | 2 | lnfn0i 29594 | . . . 4 ⊢ (𝑇‘0ℎ) = 0 |
10 | 9 | oveq2i 6981 | . . 3 ⊢ ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ)) = ((𝐴 · (𝑇‘𝐵)) + 0) |
11 | 2 | lnfnfi 29593 | . . . . . 6 ⊢ 𝑇: ℋ⟶ℂ |
12 | 11 | ffvelrni 6669 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℂ) |
13 | mulcl 10413 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℂ) → (𝐴 · (𝑇‘𝐵)) ∈ ℂ) | |
14 | 12, 13 | sylan2 583 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇‘𝐵)) ∈ ℂ) |
15 | 14 | addid1d 10634 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇‘𝐵)) + 0) = (𝐴 · (𝑇‘𝐵))) |
16 | 10, 15 | syl5eq 2820 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇‘𝐵)) + (𝑇‘0ℎ)) = (𝐴 · (𝑇‘𝐵))) |
17 | 4, 8, 16 | 3eqtr3d 2816 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 ·ℎ 𝐵)) = (𝐴 · (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ‘cfv 6182 (class class class)co 6970 ℂcc 10327 0cc0 10329 + caddc 10332 · cmul 10334 ℋchba 28469 +ℎ cva 28470 ·ℎ csm 28471 0ℎc0v 28474 LinFnclf 28504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-hilex 28549 ax-hv0cl 28553 ax-hvaddid 28554 ax-hfvmul 28555 ax-hvmulid 28556 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-po 5320 df-so 5321 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-er 8083 df-map 8202 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-ltxr 10473 df-sub 10666 df-lnfn 29400 |
This theorem is referenced by: lnfnaddmuli 29597 lnfnmul 29600 nmbdfnlbi 29601 nmcfnexi 29603 nmcfnlbi 29604 nlelshi 29612 riesz3i 29614 |
Copyright terms: Public domain | W3C validator |