HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnmuli Structured version   Visualization version   GIF version

Theorem lnfnmuli 32073
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfnmuli ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))

Proof of Theorem lnfnmuli
StepHypRef Expression
1 ax-hv0cl 31032 . . 3 0 ∈ ℋ
2 lnfnl.1 . . . 4 𝑇 ∈ LinFn
32lnfnli 32069 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 0 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
41, 3mp3an3 1449 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = ((𝐴 · (𝑇𝐵)) + (𝑇‘0)))
5 hvmulcl 31042 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
6 ax-hvaddid 31033 . . . 4 ((𝐴 · 𝐵) ∈ ℋ → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
75, 6syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · 𝐵) + 0) = (𝐴 · 𝐵))
87fveq2d 6911 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘((𝐴 · 𝐵) + 0)) = (𝑇‘(𝐴 · 𝐵)))
92lnfn0i 32071 . . . 4 (𝑇‘0) = 0
109oveq2i 7442 . . 3 ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = ((𝐴 · (𝑇𝐵)) + 0)
112lnfnfi 32070 . . . . . 6 𝑇: ℋ⟶ℂ
1211ffvelcdmi 7103 . . . . 5 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℂ)
13 mulcl 11237 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇𝐵) ∈ ℂ) → (𝐴 · (𝑇𝐵)) ∈ ℂ)
1412, 13sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · (𝑇𝐵)) ∈ ℂ)
1514addridd 11459 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + 0) = (𝐴 · (𝑇𝐵)))
1610, 15eqtrid 2787 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((𝐴 · (𝑇𝐵)) + (𝑇‘0)) = (𝐴 · (𝑇𝐵)))
174, 8, 163eqtr3d 2783 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153   + caddc 11156   · cmul 11158  chba 30948   + cva 30949   · csm 30950  0c0v 30953  LinFnclf 30983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-hilex 31028  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-lnfn 31877
This theorem is referenced by:  lnfnaddmuli  32074  lnfnmul  32077  nmbdfnlbi  32078  nmcfnexi  32080  nmcfnlbi  32081  nlelshi  32089  riesz3i  32091
  Copyright terms: Public domain W3C validator