![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnmuli | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | β’ π β LinFn |
Ref | Expression |
---|---|
lnfnmuli | β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ Β·β π΅)) = (π΄ Β· (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30761 | . . 3 β’ 0β β β | |
2 | lnfnl.1 | . . . 4 β’ π β LinFn | |
3 | 2 | lnfnli 31798 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ 0β β β) β (πβ((π΄ Β·β π΅) +β 0β)) = ((π΄ Β· (πβπ΅)) + (πβ0β))) |
4 | 1, 3 | mp3an3 1446 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ((π΄ Β·β π΅) +β 0β)) = ((π΄ Β· (πβπ΅)) + (πβ0β))) |
5 | hvmulcl 30771 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β·β π΅) β β) | |
6 | ax-hvaddid 30762 | . . . 4 β’ ((π΄ Β·β π΅) β β β ((π΄ Β·β π΅) +β 0β) = (π΄ Β·β π΅)) | |
7 | 5, 6 | syl 17 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β·β π΅) +β 0β) = (π΄ Β·β π΅)) |
8 | 7 | fveq2d 6888 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ((π΄ Β·β π΅) +β 0β)) = (πβ(π΄ Β·β π΅))) |
9 | 2 | lnfn0i 31800 | . . . 4 β’ (πβ0β) = 0 |
10 | 9 | oveq2i 7415 | . . 3 β’ ((π΄ Β· (πβπ΅)) + (πβ0β)) = ((π΄ Β· (πβπ΅)) + 0) |
11 | 2 | lnfnfi 31799 | . . . . . 6 β’ π: ββΆβ |
12 | 11 | ffvelcdmi 7078 | . . . . 5 β’ (π΅ β β β (πβπ΅) β β) |
13 | mulcl 11193 | . . . . 5 β’ ((π΄ β β β§ (πβπ΅) β β) β (π΄ Β· (πβπ΅)) β β) | |
14 | 12, 13 | sylan2 592 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β· (πβπ΅)) β β) |
15 | 14 | addridd 11415 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β· (πβπ΅)) + 0) = (π΄ Β· (πβπ΅))) |
16 | 10, 15 | eqtrid 2778 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β· (πβπ΅)) + (πβ0β)) = (π΄ Β· (πβπ΅))) |
17 | 4, 8, 16 | 3eqtr3d 2774 | 1 β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ Β·β π΅)) = (π΄ Β· (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βcfv 6536 (class class class)co 7404 βcc 11107 0cc0 11109 + caddc 11112 Β· cmul 11114 βchba 30677 +β cva 30678 Β·β csm 30679 0βc0v 30682 LinFnclf 30712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-hilex 30757 ax-hv0cl 30761 ax-hvaddid 30762 ax-hfvmul 30763 ax-hvmulid 30764 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-ltxr 11254 df-sub 11447 df-lnfn 31606 |
This theorem is referenced by: lnfnaddmuli 31803 lnfnmul 31806 nmbdfnlbi 31807 nmcfnexi 31809 nmcfnlbi 31810 nlelshi 31818 riesz3i 31820 |
Copyright terms: Public domain | W3C validator |