![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnmuli | Structured version Visualization version GIF version |
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | β’ π β LinFn |
Ref | Expression |
---|---|
lnfnmuli | β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ Β·β π΅)) = (π΄ Β· (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30251 | . . 3 β’ 0β β β | |
2 | lnfnl.1 | . . . 4 β’ π β LinFn | |
3 | 2 | lnfnli 31288 | . . 3 β’ ((π΄ β β β§ π΅ β β β§ 0β β β) β (πβ((π΄ Β·β π΅) +β 0β)) = ((π΄ Β· (πβπ΅)) + (πβ0β))) |
4 | 1, 3 | mp3an3 1450 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ((π΄ Β·β π΅) +β 0β)) = ((π΄ Β· (πβπ΅)) + (πβ0β))) |
5 | hvmulcl 30261 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β·β π΅) β β) | |
6 | ax-hvaddid 30252 | . . . 4 β’ ((π΄ Β·β π΅) β β β ((π΄ Β·β π΅) +β 0β) = (π΄ Β·β π΅)) | |
7 | 5, 6 | syl 17 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β·β π΅) +β 0β) = (π΄ Β·β π΅)) |
8 | 7 | fveq2d 6895 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ((π΄ Β·β π΅) +β 0β)) = (πβ(π΄ Β·β π΅))) |
9 | 2 | lnfn0i 31290 | . . . 4 β’ (πβ0β) = 0 |
10 | 9 | oveq2i 7419 | . . 3 β’ ((π΄ Β· (πβπ΅)) + (πβ0β)) = ((π΄ Β· (πβπ΅)) + 0) |
11 | 2 | lnfnfi 31289 | . . . . . 6 β’ π: ββΆβ |
12 | 11 | ffvelcdmi 7085 | . . . . 5 β’ (π΅ β β β (πβπ΅) β β) |
13 | mulcl 11193 | . . . . 5 β’ ((π΄ β β β§ (πβπ΅) β β) β (π΄ Β· (πβπ΅)) β β) | |
14 | 12, 13 | sylan2 593 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β· (πβπ΅)) β β) |
15 | 14 | addridd 11413 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β· (πβπ΅)) + 0) = (π΄ Β· (πβπ΅))) |
16 | 10, 15 | eqtrid 2784 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((π΄ Β· (πβπ΅)) + (πβ0β)) = (π΄ Β· (πβπ΅))) |
17 | 4, 8, 16 | 3eqtr3d 2780 | 1 β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ Β·β π΅)) = (π΄ Β· (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 βcc 11107 0cc0 11109 + caddc 11112 Β· cmul 11114 βchba 30167 +β cva 30168 Β·β csm 30169 0βc0v 30172 LinFnclf 30202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-hilex 30247 ax-hv0cl 30251 ax-hvaddid 30252 ax-hfvmul 30253 ax-hvmulid 30254 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-lnfn 31096 |
This theorem is referenced by: lnfnaddmuli 31293 lnfnmul 31296 nmbdfnlbi 31297 nmcfnexi 31299 nmcfnlbi 31300 nlelshi 31308 riesz3i 31310 |
Copyright terms: Public domain | W3C validator |