HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem1 Structured version   Visualization version   GIF version

Theorem 5oalem1 29358
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem1.1 𝐴S
5oalem1.2 𝐵S
5oalem1.3 𝐶S
5oalem1.4 𝑅S
Assertion
Ref Expression
5oalem1 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))

Proof of Theorem 5oalem1
StepHypRef Expression
1 simplll 771 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥𝐴)
2 5oalem1.1 . . . . . . . 8 𝐴S
32sheli 28918 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
43ad2antrr 722 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥 ∈ ℋ)
5 5oalem1.3 . . . . . . . 8 𝐶S
65sheli 28918 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
76adantr 481 . . . . . 6 ((𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅) → 𝑧 ∈ ℋ)
8 hvaddsub12 28742 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = (𝑧 + (𝑥 𝑧)))
983anidm23 1413 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = (𝑧 + (𝑥 𝑧)))
10 hvsubid 28730 . . . . . . . . 9 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
1110oveq2d 7161 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑥 + (𝑧 𝑧)) = (𝑥 + 0))
12 ax-hvaddid 28708 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑥 + 0) = 𝑥)
1311, 12sylan9eqr 2875 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = 𝑥)
149, 13eqtr3d 2855 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 + (𝑥 𝑧)) = 𝑥)
154, 7, 14syl2an 595 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑧 + (𝑥 𝑧)) = 𝑥)
16 5oalem1.4 . . . . . . 7 𝑅S
175, 16shsvai 29068 . . . . . 6 ((𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅) → (𝑧 + (𝑥 𝑧)) ∈ (𝐶 + 𝑅))
1817adantl 482 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑧 + (𝑥 𝑧)) ∈ (𝐶 + 𝑅))
1915, 18eqeltrrd 2911 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐶 + 𝑅))
201, 19elind 4168 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)))
21 simpllr 772 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑦𝐵)
225, 16shscli 29021 . . . . . 6 (𝐶 + 𝑅) ∈ S
232, 22shincli 29066 . . . . 5 (𝐴 ∩ (𝐶 + 𝑅)) ∈ S
24 5oalem1.2 . . . . 5 𝐵S
2523, 24shsvai 29068 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)) ∧ 𝑦𝐵) → (𝑥 + 𝑦) ∈ ((𝐴 ∩ (𝐶 + 𝑅)) + 𝐵))
2623, 24shscomi 29067 . . . 4 ((𝐴 ∩ (𝐶 + 𝑅)) + 𝐵) = (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))
2725, 26eleqtrdi 2920 . . 3 ((𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)) ∧ 𝑦𝐵) → (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
2820, 21, 27syl2anc 584 . 2 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
29 eleq1 2897 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))))
3029ad2antlr 723 . 2 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))))
3128, 30mpbird 258 1 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  cin 3932  (class class class)co 7145  chba 28623   + cva 28624  0c0v 28628   cmv 28629   S csh 28632   + cph 28635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-hilex 28703  ax-hfvadd 28704  ax-hvcom 28705  ax-hvass 28706  ax-hv0cl 28707  ax-hvaddid 28708  ax-hfvmul 28709  ax-hvmulid 28710  ax-hvdistr1 28712  ax-hvdistr2 28713  ax-hvmul0 28714
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-ltxr 10668  df-sub 10860  df-neg 10861  df-grpo 28197  df-ablo 28249  df-hvsub 28675  df-sh 28911  df-shs 29012
This theorem is referenced by:  5oalem6  29363
  Copyright terms: Public domain W3C validator