HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem1 Structured version   Visualization version   GIF version

Theorem 5oalem1 31411
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem1.1 𝐴S
5oalem1.2 𝐵S
5oalem1.3 𝐶S
5oalem1.4 𝑅S
Assertion
Ref Expression
5oalem1 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))

Proof of Theorem 5oalem1
StepHypRef Expression
1 simplll 772 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥𝐴)
2 5oalem1.1 . . . . . . . 8 𝐴S
32sheli 30971 . . . . . . 7 (𝑥𝐴𝑥 ∈ ℋ)
43ad2antrr 723 . . . . . 6 (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) → 𝑥 ∈ ℋ)
5 5oalem1.3 . . . . . . . 8 𝐶S
65sheli 30971 . . . . . . 7 (𝑧𝐶𝑧 ∈ ℋ)
76adantr 480 . . . . . 6 ((𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅) → 𝑧 ∈ ℋ)
8 hvaddsub12 30795 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = (𝑧 + (𝑥 𝑧)))
983anidm23 1418 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = (𝑧 + (𝑥 𝑧)))
10 hvsubid 30783 . . . . . . . . 9 (𝑧 ∈ ℋ → (𝑧 𝑧) = 0)
1110oveq2d 7420 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑥 + (𝑧 𝑧)) = (𝑥 + 0))
12 ax-hvaddid 30761 . . . . . . . 8 (𝑥 ∈ ℋ → (𝑥 + 0) = 𝑥)
1311, 12sylan9eqr 2788 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 + (𝑧 𝑧)) = 𝑥)
149, 13eqtr3d 2768 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 + (𝑥 𝑧)) = 𝑥)
154, 7, 14syl2an 595 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑧 + (𝑥 𝑧)) = 𝑥)
16 5oalem1.4 . . . . . . 7 𝑅S
175, 16shsvai 31121 . . . . . 6 ((𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅) → (𝑧 + (𝑥 𝑧)) ∈ (𝐶 + 𝑅))
1817adantl 481 . . . . 5 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑧 + (𝑥 𝑧)) ∈ (𝐶 + 𝑅))
1915, 18eqeltrrd 2828 . . . 4 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐶 + 𝑅))
201, 19elind 4189 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)))
21 simpllr 773 . . 3 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑦𝐵)
225, 16shscli 31074 . . . . . 6 (𝐶 + 𝑅) ∈ S
232, 22shincli 31119 . . . . 5 (𝐴 ∩ (𝐶 + 𝑅)) ∈ S
24 5oalem1.2 . . . . 5 𝐵S
2523, 24shsvai 31121 . . . 4 ((𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)) ∧ 𝑦𝐵) → (𝑥 + 𝑦) ∈ ((𝐴 ∩ (𝐶 + 𝑅)) + 𝐵))
2623, 24shscomi 31120 . . . 4 ((𝐴 ∩ (𝐶 + 𝑅)) + 𝐵) = (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))
2725, 26eleqtrdi 2837 . . 3 ((𝑥 ∈ (𝐴 ∩ (𝐶 + 𝑅)) ∧ 𝑦𝐵) → (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
2820, 21, 27syl2anc 583 . 2 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
29 eleq1 2815 . . 3 (𝑣 = (𝑥 + 𝑦) → (𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))))
3029ad2antlr 724 . 2 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → (𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))) ↔ (𝑥 + 𝑦) ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅)))))
3128, 30mpbird 257 1 ((((𝑥𝐴𝑦𝐵) ∧ 𝑣 = (𝑥 + 𝑦)) ∧ (𝑧𝐶 ∧ (𝑥 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 + (𝐴 ∩ (𝐶 + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  cin 3942  (class class class)co 7404  chba 30676   + cva 30677  0c0v 30681   cmv 30682   S csh 30685   + cph 30688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-hilex 30756  ax-hfvadd 30757  ax-hvcom 30758  ax-hvass 30759  ax-hv0cl 30760  ax-hvaddid 30761  ax-hfvmul 30762  ax-hvmulid 30763  ax-hvdistr1 30765  ax-hvdistr2 30766  ax-hvmul0 30767
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-ltxr 11254  df-sub 11447  df-neg 11448  df-grpo 30250  df-ablo 30302  df-hvsub 30728  df-sh 30964  df-shs 31065
This theorem is referenced by:  5oalem6  31416
  Copyright terms: Public domain W3C validator