| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > 5oalem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 5oalem1.1 | ⊢ 𝐴 ∈ Sℋ |
| 5oalem1.2 | ⊢ 𝐵 ∈ Sℋ |
| 5oalem1.3 | ⊢ 𝐶 ∈ Sℋ |
| 5oalem1.4 | ⊢ 𝑅 ∈ Sℋ |
| Ref | Expression |
|---|---|
| 5oalem1 | ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll 775 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ 𝐴) | |
| 2 | 5oalem1.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Sℋ | |
| 3 | 2 | sheli 31233 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ) |
| 4 | 3 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → 𝑥 ∈ ℋ) |
| 5 | 5oalem1.3 | . . . . . . . 8 ⊢ 𝐶 ∈ Sℋ | |
| 6 | 5 | sheli 31233 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅) → 𝑧 ∈ ℋ) |
| 8 | hvaddsub12 31057 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑧 +ℎ (𝑥 −ℎ 𝑧))) | |
| 9 | 8 | 3anidm23 1423 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑧 +ℎ (𝑥 −ℎ 𝑧))) |
| 10 | hvsubid 31045 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 𝑧) = 0ℎ) | |
| 11 | 10 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑥 +ℎ 0ℎ)) |
| 12 | ax-hvaddid 31023 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ 0ℎ) = 𝑥) | |
| 13 | 11, 12 | sylan9eqr 2799 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = 𝑥) |
| 14 | 9, 13 | eqtr3d 2779 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) = 𝑥) |
| 15 | 4, 7, 14 | syl2an 596 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) = 𝑥) |
| 16 | 5oalem1.4 | . . . . . . 7 ⊢ 𝑅 ∈ Sℋ | |
| 17 | 5, 16 | shsvai 31383 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) ∈ (𝐶 +ℋ 𝑅)) |
| 18 | 17 | adantl 481 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) ∈ (𝐶 +ℋ 𝑅)) |
| 19 | 15, 18 | eqeltrrd 2842 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐶 +ℋ 𝑅)) |
| 20 | 1, 19 | elind 4200 | . . 3 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅))) |
| 21 | simpllr 776 | . . 3 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑦 ∈ 𝐵) | |
| 22 | 5, 16 | shscli 31336 | . . . . . 6 ⊢ (𝐶 +ℋ 𝑅) ∈ Sℋ |
| 23 | 2, 22 | shincli 31381 | . . . . 5 ⊢ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∈ Sℋ |
| 24 | 5oalem1.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
| 25 | 23, 24 | shsvai 31383 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∧ 𝑦 ∈ 𝐵) → (𝑥 +ℎ 𝑦) ∈ ((𝐴 ∩ (𝐶 +ℋ 𝑅)) +ℋ 𝐵)) |
| 26 | 23, 24 | shscomi 31382 | . . . 4 ⊢ ((𝐴 ∩ (𝐶 +ℋ 𝑅)) +ℋ 𝐵) = (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) |
| 27 | 25, 26 | eleqtrdi 2851 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∧ 𝑦 ∈ 𝐵) → (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
| 28 | 20, 21, 27 | syl2anc 584 | . 2 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
| 29 | eleq1 2829 | . . 3 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) ↔ (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))))) | |
| 30 | 29 | ad2antlr 727 | . 2 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) ↔ (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))))) |
| 31 | 28, 30 | mpbird 257 | 1 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 (class class class)co 7431 ℋchba 30938 +ℎ cva 30939 0ℎc0v 30943 −ℎ cmv 30944 Sℋ csh 30947 +ℋ cph 30950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-neg 11495 df-grpo 30512 df-ablo 30564 df-hvsub 30990 df-sh 31226 df-shs 31327 |
| This theorem is referenced by: 5oalem6 31678 |
| Copyright terms: Public domain | W3C validator |