![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 5oalem1 | Structured version Visualization version GIF version |
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
5oalem1.1 | ⊢ 𝐴 ∈ Sℋ |
5oalem1.2 | ⊢ 𝐵 ∈ Sℋ |
5oalem1.3 | ⊢ 𝐶 ∈ Sℋ |
5oalem1.4 | ⊢ 𝑅 ∈ Sℋ |
Ref | Expression |
---|---|
5oalem1 | ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 774 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ 𝐴) | |
2 | 5oalem1.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Sℋ | |
3 | 2 | sheli 30444 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ) |
4 | 3 | ad2antrr 725 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → 𝑥 ∈ ℋ) |
5 | 5oalem1.3 | . . . . . . . 8 ⊢ 𝐶 ∈ Sℋ | |
6 | 5 | sheli 30444 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
7 | 6 | adantr 482 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅) → 𝑧 ∈ ℋ) |
8 | hvaddsub12 30268 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑧 +ℎ (𝑥 −ℎ 𝑧))) | |
9 | 8 | 3anidm23 1422 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑧 +ℎ (𝑥 −ℎ 𝑧))) |
10 | hvsubid 30256 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 𝑧) = 0ℎ) | |
11 | 10 | oveq2d 7419 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑥 +ℎ 0ℎ)) |
12 | ax-hvaddid 30234 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ 0ℎ) = 𝑥) | |
13 | 11, 12 | sylan9eqr 2795 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = 𝑥) |
14 | 9, 13 | eqtr3d 2775 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) = 𝑥) |
15 | 4, 7, 14 | syl2an 597 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) = 𝑥) |
16 | 5oalem1.4 | . . . . . . 7 ⊢ 𝑅 ∈ Sℋ | |
17 | 5, 16 | shsvai 30594 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) ∈ (𝐶 +ℋ 𝑅)) |
18 | 17 | adantl 483 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) ∈ (𝐶 +ℋ 𝑅)) |
19 | 15, 18 | eqeltrrd 2835 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐶 +ℋ 𝑅)) |
20 | 1, 19 | elind 4192 | . . 3 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅))) |
21 | simpllr 775 | . . 3 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑦 ∈ 𝐵) | |
22 | 5, 16 | shscli 30547 | . . . . . 6 ⊢ (𝐶 +ℋ 𝑅) ∈ Sℋ |
23 | 2, 22 | shincli 30592 | . . . . 5 ⊢ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∈ Sℋ |
24 | 5oalem1.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
25 | 23, 24 | shsvai 30594 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∧ 𝑦 ∈ 𝐵) → (𝑥 +ℎ 𝑦) ∈ ((𝐴 ∩ (𝐶 +ℋ 𝑅)) +ℋ 𝐵)) |
26 | 23, 24 | shscomi 30593 | . . . 4 ⊢ ((𝐴 ∩ (𝐶 +ℋ 𝑅)) +ℋ 𝐵) = (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) |
27 | 25, 26 | eleqtrdi 2844 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∧ 𝑦 ∈ 𝐵) → (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
28 | 20, 21, 27 | syl2anc 585 | . 2 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
29 | eleq1 2822 | . . 3 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) ↔ (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))))) | |
30 | 29 | ad2antlr 726 | . 2 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) ↔ (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))))) |
31 | 28, 30 | mpbird 257 | 1 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∩ cin 3945 (class class class)co 7403 ℋchba 30149 +ℎ cva 30150 0ℎc0v 30154 −ℎ cmv 30155 Sℋ csh 30158 +ℋ cph 30161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-hilex 30229 ax-hfvadd 30230 ax-hvcom 30231 ax-hvass 30232 ax-hv0cl 30233 ax-hvaddid 30234 ax-hfvmul 30235 ax-hvmulid 30236 ax-hvdistr1 30238 ax-hvdistr2 30239 ax-hvmul0 30240 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11245 df-mnf 11246 df-ltxr 11248 df-sub 11441 df-neg 11442 df-grpo 29723 df-ablo 29775 df-hvsub 30201 df-sh 30437 df-shs 30538 |
This theorem is referenced by: 5oalem6 30889 |
Copyright terms: Public domain | W3C validator |