![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 5oalem1 | Structured version Visualization version GIF version |
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
5oalem1.1 | ⊢ 𝐴 ∈ Sℋ |
5oalem1.2 | ⊢ 𝐵 ∈ Sℋ |
5oalem1.3 | ⊢ 𝐶 ∈ Sℋ |
5oalem1.4 | ⊢ 𝑅 ∈ Sℋ |
Ref | Expression |
---|---|
5oalem1 | ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 773 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ 𝐴) | |
2 | 5oalem1.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Sℋ | |
3 | 2 | sheli 31044 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ) |
4 | 3 | ad2antrr 724 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → 𝑥 ∈ ℋ) |
5 | 5oalem1.3 | . . . . . . . 8 ⊢ 𝐶 ∈ Sℋ | |
6 | 5 | sheli 31044 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
7 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅) → 𝑧 ∈ ℋ) |
8 | hvaddsub12 30868 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑧 +ℎ (𝑥 −ℎ 𝑧))) | |
9 | 8 | 3anidm23 1418 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑧 +ℎ (𝑥 −ℎ 𝑧))) |
10 | hvsubid 30856 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 𝑧) = 0ℎ) | |
11 | 10 | oveq2d 7442 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑥 +ℎ 0ℎ)) |
12 | ax-hvaddid 30834 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ 0ℎ) = 𝑥) | |
13 | 11, 12 | sylan9eqr 2790 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = 𝑥) |
14 | 9, 13 | eqtr3d 2770 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) = 𝑥) |
15 | 4, 7, 14 | syl2an 594 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) = 𝑥) |
16 | 5oalem1.4 | . . . . . . 7 ⊢ 𝑅 ∈ Sℋ | |
17 | 5, 16 | shsvai 31194 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) ∈ (𝐶 +ℋ 𝑅)) |
18 | 17 | adantl 480 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) ∈ (𝐶 +ℋ 𝑅)) |
19 | 15, 18 | eqeltrrd 2830 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐶 +ℋ 𝑅)) |
20 | 1, 19 | elind 4196 | . . 3 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅))) |
21 | simpllr 774 | . . 3 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑦 ∈ 𝐵) | |
22 | 5, 16 | shscli 31147 | . . . . . 6 ⊢ (𝐶 +ℋ 𝑅) ∈ Sℋ |
23 | 2, 22 | shincli 31192 | . . . . 5 ⊢ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∈ Sℋ |
24 | 5oalem1.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
25 | 23, 24 | shsvai 31194 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∧ 𝑦 ∈ 𝐵) → (𝑥 +ℎ 𝑦) ∈ ((𝐴 ∩ (𝐶 +ℋ 𝑅)) +ℋ 𝐵)) |
26 | 23, 24 | shscomi 31193 | . . . 4 ⊢ ((𝐴 ∩ (𝐶 +ℋ 𝑅)) +ℋ 𝐵) = (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) |
27 | 25, 26 | eleqtrdi 2839 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∧ 𝑦 ∈ 𝐵) → (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
28 | 20, 21, 27 | syl2anc 582 | . 2 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
29 | eleq1 2817 | . . 3 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) ↔ (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))))) | |
30 | 29 | ad2antlr 725 | . 2 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) ↔ (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))))) |
31 | 28, 30 | mpbird 256 | 1 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 (class class class)co 7426 ℋchba 30749 +ℎ cva 30750 0ℎc0v 30754 −ℎ cmv 30755 Sℋ csh 30758 +ℋ cph 30761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-hilex 30829 ax-hfvadd 30830 ax-hvcom 30831 ax-hvass 30832 ax-hv0cl 30833 ax-hvaddid 30834 ax-hfvmul 30835 ax-hvmulid 30836 ax-hvdistr1 30838 ax-hvdistr2 30839 ax-hvmul0 30840 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-ltxr 11291 df-sub 11484 df-neg 11485 df-grpo 30323 df-ablo 30375 df-hvsub 30801 df-sh 31037 df-shs 31138 |
This theorem is referenced by: 5oalem6 31489 |
Copyright terms: Public domain | W3C validator |