![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 5oalem1 | Structured version Visualization version GIF version |
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
5oalem1.1 | ⊢ 𝐴 ∈ Sℋ |
5oalem1.2 | ⊢ 𝐵 ∈ Sℋ |
5oalem1.3 | ⊢ 𝐶 ∈ Sℋ |
5oalem1.4 | ⊢ 𝑅 ∈ Sℋ |
Ref | Expression |
---|---|
5oalem1 | ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 765 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ 𝐴) | |
2 | 5oalem1.1 | . . . . . . . 8 ⊢ 𝐴 ∈ Sℋ | |
3 | 2 | sheli 28643 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ) |
4 | 3 | ad2antrr 716 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) → 𝑥 ∈ ℋ) |
5 | 5oalem1.3 | . . . . . . . 8 ⊢ 𝐶 ∈ Sℋ | |
6 | 5 | sheli 28643 | . . . . . . 7 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ) |
7 | 6 | adantr 474 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅) → 𝑧 ∈ ℋ) |
8 | hvaddsub12 28467 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑧 +ℎ (𝑥 −ℎ 𝑧))) | |
9 | 8 | 3anidm23 1493 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑧 +ℎ (𝑥 −ℎ 𝑧))) |
10 | hvsubid 28455 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℋ → (𝑧 −ℎ 𝑧) = 0ℎ) | |
11 | 10 | oveq2d 6938 | . . . . . . . 8 ⊢ (𝑧 ∈ ℋ → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = (𝑥 +ℎ 0ℎ)) |
12 | ax-hvaddid 28433 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ 0ℎ) = 𝑥) | |
13 | 11, 12 | sylan9eqr 2836 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑥 +ℎ (𝑧 −ℎ 𝑧)) = 𝑥) |
14 | 9, 13 | eqtr3d 2816 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) = 𝑥) |
15 | 4, 7, 14 | syl2an 589 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) = 𝑥) |
16 | 5oalem1.4 | . . . . . . 7 ⊢ 𝑅 ∈ Sℋ | |
17 | 5, 16 | shsvai 28795 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) ∈ (𝐶 +ℋ 𝑅)) |
18 | 17 | adantl 475 | . . . . 5 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑧 +ℎ (𝑥 −ℎ 𝑧)) ∈ (𝐶 +ℋ 𝑅)) |
19 | 15, 18 | eqeltrrd 2860 | . . . 4 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐶 +ℋ 𝑅)) |
20 | 1, 19 | elind 4021 | . . 3 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅))) |
21 | simpllr 766 | . . 3 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑦 ∈ 𝐵) | |
22 | 5, 16 | shscli 28748 | . . . . . 6 ⊢ (𝐶 +ℋ 𝑅) ∈ Sℋ |
23 | 2, 22 | shincli 28793 | . . . . 5 ⊢ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∈ Sℋ |
24 | 5oalem1.2 | . . . . 5 ⊢ 𝐵 ∈ Sℋ | |
25 | 23, 24 | shsvai 28795 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∧ 𝑦 ∈ 𝐵) → (𝑥 +ℎ 𝑦) ∈ ((𝐴 ∩ (𝐶 +ℋ 𝑅)) +ℋ 𝐵)) |
26 | 23, 24 | shscomi 28794 | . . . 4 ⊢ ((𝐴 ∩ (𝐶 +ℋ 𝑅)) +ℋ 𝐵) = (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) |
27 | 25, 26 | syl6eleq 2869 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ (𝐶 +ℋ 𝑅)) ∧ 𝑦 ∈ 𝐵) → (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
28 | 20, 21, 27 | syl2anc 579 | . 2 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
29 | eleq1 2847 | . . 3 ⊢ (𝑣 = (𝑥 +ℎ 𝑦) → (𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) ↔ (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))))) | |
30 | 29 | ad2antlr 717 | . 2 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → (𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))) ↔ (𝑥 +ℎ 𝑦) ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅))))) |
31 | 28, 30 | mpbird 249 | 1 ⊢ ((((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐶 ∧ (𝑥 −ℎ 𝑧) ∈ 𝑅)) → 𝑣 ∈ (𝐵 +ℋ (𝐴 ∩ (𝐶 +ℋ 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∩ cin 3791 (class class class)co 6922 ℋchba 28348 +ℎ cva 28349 0ℎc0v 28353 −ℎ cmv 28354 Sℋ csh 28357 +ℋ cph 28360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-hilex 28428 ax-hfvadd 28429 ax-hvcom 28430 ax-hvass 28431 ax-hv0cl 28432 ax-hvaddid 28433 ax-hfvmul 28434 ax-hvmulid 28435 ax-hvdistr1 28437 ax-hvdistr2 28438 ax-hvmul0 28439 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 df-grpo 27920 df-ablo 27972 df-hvsub 28400 df-sh 28636 df-shs 28739 |
This theorem is referenced by: 5oalem6 29090 |
Copyright terms: Public domain | W3C validator |