![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bdopcoi | Structured version Visualization version GIF version |
Description: The composition of two bounded linear operators is bounded. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoptri.1 | โข ๐ โ BndLinOp |
nmoptri.2 | โข ๐ โ BndLinOp |
Ref | Expression |
---|---|
bdopcoi | โข (๐ โ ๐) โ BndLinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoptri.1 | . . . 4 โข ๐ โ BndLinOp | |
2 | bdopln 31145 | . . . 4 โข (๐ โ BndLinOp โ ๐ โ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 โข ๐ โ LinOp |
4 | nmoptri.2 | . . . 4 โข ๐ โ BndLinOp | |
5 | bdopln 31145 | . . . 4 โข (๐ โ BndLinOp โ ๐ โ LinOp) | |
6 | 4, 5 | ax-mp 5 | . . 3 โข ๐ โ LinOp |
7 | 3, 6 | lnopcoi 31287 | . 2 โข (๐ โ ๐) โ LinOp |
8 | 3 | lnopfi 31253 | . . . . 5 โข ๐: โโถ โ |
9 | 6 | lnopfi 31253 | . . . . 5 โข ๐: โโถ โ |
10 | 8, 9 | hocofi 31050 | . . . 4 โข (๐ โ ๐): โโถ โ |
11 | nmopxr 31150 | . . . 4 โข ((๐ โ ๐): โโถ โ โ (normopโ(๐ โ ๐)) โ โ*) | |
12 | 10, 11 | ax-mp 5 | . . 3 โข (normopโ(๐ โ ๐)) โ โ* |
13 | nmopre 31154 | . . . . 5 โข (๐ โ BndLinOp โ (normopโ๐) โ โ) | |
14 | 1, 13 | ax-mp 5 | . . . 4 โข (normopโ๐) โ โ |
15 | nmopre 31154 | . . . . 5 โข (๐ โ BndLinOp โ (normopโ๐) โ โ) | |
16 | 4, 15 | ax-mp 5 | . . . 4 โข (normopโ๐) โ โ |
17 | 14, 16 | remulcli 11230 | . . 3 โข ((normopโ๐) ยท (normopโ๐)) โ โ |
18 | nmopgtmnf 31152 | . . . 4 โข ((๐ โ ๐): โโถ โ โ -โ < (normopโ(๐ โ ๐))) | |
19 | 10, 18 | ax-mp 5 | . . 3 โข -โ < (normopโ(๐ โ ๐)) |
20 | 1, 4 | nmopcoi 31379 | . . 3 โข (normopโ(๐ โ ๐)) โค ((normopโ๐) ยท (normopโ๐)) |
21 | xrre 13148 | . . 3 โข ((((normopโ(๐ โ ๐)) โ โ* โง ((normopโ๐) ยท (normopโ๐)) โ โ) โง (-โ < (normopโ(๐ โ ๐)) โง (normopโ(๐ โ ๐)) โค ((normopโ๐) ยท (normopโ๐)))) โ (normopโ(๐ โ ๐)) โ โ) | |
22 | 12, 17, 19, 20, 21 | mp4an 692 | . 2 โข (normopโ(๐ โ ๐)) โ โ |
23 | elbdop2 31155 | . 2 โข ((๐ โ ๐) โ BndLinOp โ ((๐ โ ๐) โ LinOp โง (normopโ(๐ โ ๐)) โ โ)) | |
24 | 7, 22, 23 | mpbir2an 710 | 1 โข (๐ โ ๐) โ BndLinOp |
Colors of variables: wff setvar class |
Syntax hints: โ wcel 2107 class class class wbr 5149 โ ccom 5681 โถwf 6540 โcfv 6544 (class class class)co 7409 โcr 11109 ยท cmul 11115 -โcmnf 11246 โ*cxr 11247 < clt 11248 โค cle 11249 โchba 30203 normopcnop 30229 LinOpclo 30231 BndLinOpcbo 30232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cc 10430 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 ax-hilex 30283 ax-hfvadd 30284 ax-hvcom 30285 ax-hvass 30286 ax-hv0cl 30287 ax-hvaddid 30288 ax-hfvmul 30289 ax-hvmulid 30290 ax-hvmulass 30291 ax-hvdistr1 30292 ax-hvdistr2 30293 ax-hvmul0 30294 ax-hfi 30363 ax-his1 30366 ax-his2 30367 ax-his3 30368 ax-his4 30369 ax-hcompl 30486 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-oadd 8470 df-omul 8471 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-acn 9937 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-rlim 15433 df-sum 15633 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-cn 22731 df-cnp 22732 df-lm 22733 df-haus 22819 df-tx 23066 df-hmeo 23259 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-xms 23826 df-ms 23827 df-tms 23828 df-cfil 24772 df-cau 24773 df-cmet 24774 df-grpo 29777 df-gid 29778 df-ginv 29779 df-gdiv 29780 df-ablo 29829 df-vc 29843 df-nv 29876 df-va 29879 df-ba 29880 df-sm 29881 df-0v 29882 df-vs 29883 df-nmcv 29884 df-ims 29885 df-dip 29985 df-ssp 30006 df-lno 30028 df-nmoo 30029 df-0o 30031 df-ph 30097 df-cbn 30147 df-hnorm 30252 df-hba 30253 df-hvsub 30255 df-hlim 30256 df-hcau 30257 df-sh 30491 df-ch 30505 df-oc 30536 df-ch0 30537 df-shs 30592 df-pjh 30679 df-h0op 31032 df-nmop 31123 df-lnop 31125 df-bdop 31126 df-hmop 31128 |
This theorem is referenced by: adjcoi 31384 nmopcoadji 31385 unierri 31388 |
Copyright terms: Public domain | W3C validator |