Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > bdopcoi | Structured version Visualization version GIF version |
Description: The composition of two bounded linear operators is bounded. (Contributed by NM, 9-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmoptri.1 | โข ๐ โ BndLinOp |
nmoptri.2 | โข ๐ โ BndLinOp |
Ref | Expression |
---|---|
bdopcoi | โข (๐ โ ๐) โ BndLinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoptri.1 | . . . 4 โข ๐ โ BndLinOp | |
2 | bdopln 30511 | . . . 4 โข (๐ โ BndLinOp โ ๐ โ LinOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 โข ๐ โ LinOp |
4 | nmoptri.2 | . . . 4 โข ๐ โ BndLinOp | |
5 | bdopln 30511 | . . . 4 โข (๐ โ BndLinOp โ ๐ โ LinOp) | |
6 | 4, 5 | ax-mp 5 | . . 3 โข ๐ โ LinOp |
7 | 3, 6 | lnopcoi 30653 | . 2 โข (๐ โ ๐) โ LinOp |
8 | 3 | lnopfi 30619 | . . . . 5 โข ๐: โโถ โ |
9 | 6 | lnopfi 30619 | . . . . 5 โข ๐: โโถ โ |
10 | 8, 9 | hocofi 30416 | . . . 4 โข (๐ โ ๐): โโถ โ |
11 | nmopxr 30516 | . . . 4 โข ((๐ โ ๐): โโถ โ โ (normopโ(๐ โ ๐)) โ โ*) | |
12 | 10, 11 | ax-mp 5 | . . 3 โข (normopโ(๐ โ ๐)) โ โ* |
13 | nmopre 30520 | . . . . 5 โข (๐ โ BndLinOp โ (normopโ๐) โ โ) | |
14 | 1, 13 | ax-mp 5 | . . . 4 โข (normopโ๐) โ โ |
15 | nmopre 30520 | . . . . 5 โข (๐ โ BndLinOp โ (normopโ๐) โ โ) | |
16 | 4, 15 | ax-mp 5 | . . . 4 โข (normopโ๐) โ โ |
17 | 14, 16 | remulcli 11092 | . . 3 โข ((normopโ๐) ยท (normopโ๐)) โ โ |
18 | nmopgtmnf 30518 | . . . 4 โข ((๐ โ ๐): โโถ โ โ -โ < (normopโ(๐ โ ๐))) | |
19 | 10, 18 | ax-mp 5 | . . 3 โข -โ < (normopโ(๐ โ ๐)) |
20 | 1, 4 | nmopcoi 30745 | . . 3 โข (normopโ(๐ โ ๐)) โค ((normopโ๐) ยท (normopโ๐)) |
21 | xrre 13004 | . . 3 โข ((((normopโ(๐ โ ๐)) โ โ* โง ((normopโ๐) ยท (normopโ๐)) โ โ) โง (-โ < (normopโ(๐ โ ๐)) โง (normopโ(๐ โ ๐)) โค ((normopโ๐) ยท (normopโ๐)))) โ (normopโ(๐ โ ๐)) โ โ) | |
22 | 12, 17, 19, 20, 21 | mp4an 690 | . 2 โข (normopโ(๐ โ ๐)) โ โ |
23 | elbdop2 30521 | . 2 โข ((๐ โ ๐) โ BndLinOp โ ((๐ โ ๐) โ LinOp โง (normopโ(๐ โ ๐)) โ โ)) | |
24 | 7, 22, 23 | mpbir2an 708 | 1 โข (๐ โ ๐) โ BndLinOp |
Colors of variables: wff setvar class |
Syntax hints: โ wcel 2105 class class class wbr 5092 โ ccom 5624 โถwf 6475 โcfv 6479 (class class class)co 7337 โcr 10971 ยท cmul 10977 -โcmnf 11108 โ*cxr 11109 < clt 11110 โค cle 11111 โchba 29569 normopcnop 29595 LinOpclo 29597 BndLinOpcbo 29598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cc 10292 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 ax-addf 11051 ax-mulf 11052 ax-hilex 29649 ax-hfvadd 29650 ax-hvcom 29651 ax-hvass 29652 ax-hv0cl 29653 ax-hvaddid 29654 ax-hfvmul 29655 ax-hvmulid 29656 ax-hvmulass 29657 ax-hvdistr1 29658 ax-hvdistr2 29659 ax-hvmul0 29660 ax-hfi 29729 ax-his1 29732 ax-his2 29733 ax-his3 29734 ax-his4 29735 ax-hcompl 29852 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-omul 8372 df-er 8569 df-map 8688 df-pm 8689 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-acn 9799 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ioo 13184 df-ico 13186 df-icc 13187 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-rlim 15297 df-sum 15497 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-fbas 20700 df-fg 20701 df-cnfld 20704 df-top 22149 df-topon 22166 df-topsp 22188 df-bases 22202 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-cn 22484 df-cnp 22485 df-lm 22486 df-haus 22572 df-tx 22819 df-hmeo 23012 df-fil 23103 df-fm 23195 df-flim 23196 df-flf 23197 df-xms 23579 df-ms 23580 df-tms 23581 df-cfil 24525 df-cau 24526 df-cmet 24527 df-grpo 29143 df-gid 29144 df-ginv 29145 df-gdiv 29146 df-ablo 29195 df-vc 29209 df-nv 29242 df-va 29245 df-ba 29246 df-sm 29247 df-0v 29248 df-vs 29249 df-nmcv 29250 df-ims 29251 df-dip 29351 df-ssp 29372 df-lno 29394 df-nmoo 29395 df-0o 29397 df-ph 29463 df-cbn 29513 df-hnorm 29618 df-hba 29619 df-hvsub 29621 df-hlim 29622 df-hcau 29623 df-sh 29857 df-ch 29871 df-oc 29902 df-ch0 29903 df-shs 29958 df-pjh 30045 df-h0op 30398 df-nmop 30489 df-lnop 30491 df-bdop 30492 df-hmop 30494 |
This theorem is referenced by: adjcoi 30750 nmopcoadji 30751 unierri 30754 |
Copyright terms: Public domain | W3C validator |