HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdoplbi Structured version   Visualization version   GIF version

Theorem nmbdoplbi 29807
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdoplb.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmbdoplbi (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))

Proof of Theorem nmbdoplbi
StepHypRef Expression
1 fveq2 6645 . . . 4 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
21fveq2d 6649 . . 3 (𝐴 = 0 → (norm‘(𝑇𝐴)) = (norm‘(𝑇‘0)))
3 fveq2 6645 . . . 4 (𝐴 = 0 → (norm𝐴) = (norm‘0))
43oveq2d 7151 . . 3 (𝐴 = 0 → ((normop𝑇) · (norm𝐴)) = ((normop𝑇) · (norm‘0)))
52, 4breq12d 5043 . 2 (𝐴 = 0 → ((norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)) ↔ (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0))))
6 nmbdoplb.1 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
7 bdopln 29644 . . . . . . . . . . . 12 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
86, 7ax-mp 5 . . . . . . . . . . 11 𝑇 ∈ LinOp
98lnopfi 29752 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
109ffvelrni 6827 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
11 normcl 28908 . . . . . . . . 9 ((𝑇𝐴) ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
1312adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℝ)
1413recnd 10658 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℂ)
15 normcl 28908 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1615adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
1716recnd 10658 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
18 normne0 28913 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1918biimpar 481 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2014, 17, 19divrec2d 11409 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
2116, 19rereccld 11456 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
2221recnd 10658 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
23 simpl 486 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
248lnopmuli 29755 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
2522, 23, 24syl2anc 587 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
2625fveq2d 6649 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (norm‘((1 / (norm𝐴)) · (𝑇𝐴))))
2710adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℋ)
28 norm-iii 28923 . . . . . . 7 (((1 / (norm𝐴)) ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
2922, 27, 28syl2anc 587 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
30 normgt0 28910 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
3130biimpa 480 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
3216, 31recgt0d 11563 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
33 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
34 ltle 10718 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3533, 34mpan 689 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3621, 32, 35sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
3721, 36absidd 14774 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
3837oveq1d 7150 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
3926, 29, 383eqtrrd 2838 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
4020, 39eqtrd 2833 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
41 hvmulcl 28796 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4222, 23, 41syl2anc 587 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
43 normcl 28908 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
4442, 43syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
45 norm1 29032 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
46 eqle 10731 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
4744, 45, 46syl2anc 587 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
48 nmoplb 29690 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
499, 48mp3an1 1445 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
5042, 47, 49syl2anc 587 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
5140, 50eqbrtrd 5052 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇))
52 nmopre 29653 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
536, 52ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
5453a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
55 ledivmul2 11508 . . . 4 (((norm‘(𝑇𝐴)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
5613, 54, 16, 31, 55syl112anc 1371 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
5751, 56mpbid 235 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
58 0le0 11726 . . . 4 0 ≤ 0
598lnop0i 29753 . . . . . 6 (𝑇‘0) = 0
6059fveq2i 6648 . . . . 5 (norm‘(𝑇‘0)) = (norm‘0)
61 norm0 28911 . . . . 5 (norm‘0) = 0
6260, 61eqtri 2821 . . . 4 (norm‘(𝑇‘0)) = 0
6361oveq2i 7146 . . . . 5 ((normop𝑇) · (norm‘0)) = ((normop𝑇) · 0)
6453recni 10644 . . . . . 6 (normop𝑇) ∈ ℂ
6564mul01i 10819 . . . . 5 ((normop𝑇) · 0) = 0
6663, 65eqtri 2821 . . . 4 ((normop𝑇) · (norm‘0)) = 0
6758, 62, 663brtr4i 5060 . . 3 (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0))
6867a1i 11 . 2 (𝐴 ∈ ℋ → (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0)))
695, 57, 68pm2.61ne 3072 1 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  abscabs 14585  chba 28702   · csm 28704  normcno 28706  0c0v 28707  normopcnop 28728  LinOpclo 28730  BndLinOpcbo 28731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-grpo 28276  df-gid 28277  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383  df-hnorm 28751  df-hba 28752  df-hvsub 28754  df-nmop 29622  df-lnop 29624  df-bdop 29625
This theorem is referenced by:  nmbdoplb  29808  nmopcoadji  29884
  Copyright terms: Public domain W3C validator