HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdoplbi Structured version   Visualization version   GIF version

Theorem nmbdoplbi 32052
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdoplb.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmbdoplbi (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))

Proof of Theorem nmbdoplbi
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
21fveq2d 6910 . . 3 (𝐴 = 0 → (norm‘(𝑇𝐴)) = (norm‘(𝑇‘0)))
3 fveq2 6906 . . . 4 (𝐴 = 0 → (norm𝐴) = (norm‘0))
43oveq2d 7446 . . 3 (𝐴 = 0 → ((normop𝑇) · (norm𝐴)) = ((normop𝑇) · (norm‘0)))
52, 4breq12d 5160 . 2 (𝐴 = 0 → ((norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)) ↔ (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0))))
6 nmbdoplb.1 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
7 bdopln 31889 . . . . . . . . . . . 12 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
86, 7ax-mp 5 . . . . . . . . . . 11 𝑇 ∈ LinOp
98lnopfi 31997 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
109ffvelcdmi 7102 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
11 normcl 31153 . . . . . . . . 9 ((𝑇𝐴) ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
1312adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℝ)
1413recnd 11286 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℂ)
15 normcl 31153 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1615adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
1716recnd 11286 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
18 normne0 31158 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1918biimpar 477 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2014, 17, 19divrec2d 12044 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
2116, 19rereccld 12091 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
2221recnd 11286 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
23 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
248lnopmuli 32000 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
2522, 23, 24syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
2625fveq2d 6910 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (norm‘((1 / (norm𝐴)) · (𝑇𝐴))))
2710adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℋ)
28 norm-iii 31168 . . . . . . 7 (((1 / (norm𝐴)) ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
2922, 27, 28syl2anc 584 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
30 normgt0 31155 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
3130biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
3216, 31recgt0d 12199 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
33 0re 11260 . . . . . . . . . 10 0 ∈ ℝ
34 ltle 11346 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3533, 34mpan 690 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3621, 32, 35sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
3721, 36absidd 15457 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
3837oveq1d 7445 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
3926, 29, 383eqtrrd 2779 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
4020, 39eqtrd 2774 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
41 hvmulcl 31041 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4222, 23, 41syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
43 normcl 31153 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
4442, 43syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
45 norm1 31277 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
46 eqle 11360 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
4744, 45, 46syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
48 nmoplb 31935 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
499, 48mp3an1 1447 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
5042, 47, 49syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
5140, 50eqbrtrd 5169 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇))
52 nmopre 31898 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
536, 52ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
5453a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
55 ledivmul2 12144 . . . 4 (((norm‘(𝑇𝐴)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
5613, 54, 16, 31, 55syl112anc 1373 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
5751, 56mpbid 232 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
58 0le0 12364 . . . 4 0 ≤ 0
598lnop0i 31998 . . . . . 6 (𝑇‘0) = 0
6059fveq2i 6909 . . . . 5 (norm‘(𝑇‘0)) = (norm‘0)
61 norm0 31156 . . . . 5 (norm‘0) = 0
6260, 61eqtri 2762 . . . 4 (norm‘(𝑇‘0)) = 0
6361oveq2i 7441 . . . . 5 ((normop𝑇) · (norm‘0)) = ((normop𝑇) · 0)
6453recni 11272 . . . . . 6 (normop𝑇) ∈ ℂ
6564mul01i 11448 . . . . 5 ((normop𝑇) · 0) = 0
6663, 65eqtri 2762 . . . 4 ((normop𝑇) · (norm‘0)) = 0
6758, 62, 663brtr4i 5177 . . 3 (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0))
6867a1i 11 . 2 (𝐴 ∈ ℋ → (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0)))
695, 57, 68pm2.61ne 3024 1 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157   < clt 11292  cle 11293   / cdiv 11917  abscabs 15269  chba 30947   · csm 30949  normcno 30951  0c0v 30952  normopcnop 30973  LinOpclo 30975  BndLinOpcbo 30976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his2 31111  ax-his3 31112  ax-his4 31113
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-grpo 30521  df-gid 30522  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-nmcv 30628  df-hnorm 30996  df-hba 30997  df-hvsub 30999  df-nmop 31867  df-lnop 31869  df-bdop 31870
This theorem is referenced by:  nmbdoplb  32053  nmopcoadji  32129
  Copyright terms: Public domain W3C validator