HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdoplbi Structured version   Visualization version   GIF version

Theorem nmbdoplbi 32043
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdoplb.1 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmbdoplbi (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))

Proof of Theorem nmbdoplbi
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
21fveq2d 6910 . . 3 (𝐴 = 0 → (norm‘(𝑇𝐴)) = (norm‘(𝑇‘0)))
3 fveq2 6906 . . . 4 (𝐴 = 0 → (norm𝐴) = (norm‘0))
43oveq2d 7447 . . 3 (𝐴 = 0 → ((normop𝑇) · (norm𝐴)) = ((normop𝑇) · (norm‘0)))
52, 4breq12d 5156 . 2 (𝐴 = 0 → ((norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)) ↔ (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0))))
6 nmbdoplb.1 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
7 bdopln 31880 . . . . . . . . . . . 12 (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp)
86, 7ax-mp 5 . . . . . . . . . . 11 𝑇 ∈ LinOp
98lnopfi 31988 . . . . . . . . . 10 𝑇: ℋ⟶ ℋ
109ffvelcdmi 7103 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
11 normcl 31144 . . . . . . . . 9 ((𝑇𝐴) ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
1312adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℝ)
1413recnd 11289 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℂ)
15 normcl 31144 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
1615adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
1716recnd 11289 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
18 normne0 31149 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1918biimpar 477 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2014, 17, 19divrec2d 12047 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
2116, 19rereccld 12094 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
2221recnd 11289 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
23 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
248lnopmuli 31991 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
2522, 23, 24syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
2625fveq2d 6910 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (norm‘((1 / (norm𝐴)) · (𝑇𝐴))))
2710adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℋ)
28 norm-iii 31159 . . . . . . 7 (((1 / (norm𝐴)) ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
2922, 27, 28syl2anc 584 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
30 normgt0 31146 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
3130biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
3216, 31recgt0d 12202 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
33 0re 11263 . . . . . . . . . 10 0 ∈ ℝ
34 ltle 11349 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3533, 34mpan 690 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3621, 32, 35sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
3721, 36absidd 15461 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
3837oveq1d 7446 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
3926, 29, 383eqtrrd 2782 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
4020, 39eqtrd 2777 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
41 hvmulcl 31032 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
4222, 23, 41syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
43 normcl 31144 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
4442, 43syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
45 norm1 31268 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
46 eqle 11363 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
4744, 45, 46syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
48 nmoplb 31926 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
499, 48mp3an1 1450 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
5042, 47, 49syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
5140, 50eqbrtrd 5165 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇))
52 nmopre 31889 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
536, 52ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
5453a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
55 ledivmul2 12147 . . . 4 (((norm‘(𝑇𝐴)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
5613, 54, 16, 31, 55syl112anc 1376 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
5751, 56mpbid 232 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
58 0le0 12367 . . . 4 0 ≤ 0
598lnop0i 31989 . . . . . 6 (𝑇‘0) = 0
6059fveq2i 6909 . . . . 5 (norm‘(𝑇‘0)) = (norm‘0)
61 norm0 31147 . . . . 5 (norm‘0) = 0
6260, 61eqtri 2765 . . . 4 (norm‘(𝑇‘0)) = 0
6361oveq2i 7442 . . . . 5 ((normop𝑇) · (norm‘0)) = ((normop𝑇) · 0)
6453recni 11275 . . . . . 6 (normop𝑇) ∈ ℂ
6564mul01i 11451 . . . . 5 ((normop𝑇) · 0) = 0
6663, 65eqtri 2765 . . . 4 ((normop𝑇) · (norm‘0)) = 0
6758, 62, 663brtr4i 5173 . . 3 (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0))
6867a1i 11 . 2 (𝐴 ∈ ℋ → (norm‘(𝑇‘0)) ≤ ((normop𝑇) · (norm‘0)))
695, 57, 68pm2.61ne 3027 1 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920  abscabs 15273  chba 30938   · csm 30940  normcno 30942  0c0v 30943  normopcnop 30964  LinOpclo 30966  BndLinOpcbo 30967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-grpo 30512  df-gid 30513  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619  df-hnorm 30987  df-hba 30988  df-hvsub 30990  df-nmop 31858  df-lnop 31860  df-bdop 31861
This theorem is referenced by:  nmbdoplb  32044  nmopcoadji  32120
  Copyright terms: Public domain W3C validator