Proof of Theorem nmbdoplbi
Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . 4
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = (𝑇‘0ℎ)) |
2 | 1 | fveq2d 6778 |
. . 3
⊢ (𝐴 = 0ℎ →
(normℎ‘(𝑇‘𝐴)) = (normℎ‘(𝑇‘0ℎ))) |
3 | | fveq2 6774 |
. . . 4
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) =
(normℎ‘0ℎ)) |
4 | 3 | oveq2d 7291 |
. . 3
⊢ (𝐴 = 0ℎ →
((normop‘𝑇) ·
(normℎ‘𝐴)) = ((normop‘𝑇) ·
(normℎ‘0ℎ))) |
5 | 2, 4 | breq12d 5087 |
. 2
⊢ (𝐴 = 0ℎ →
((normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴)) ↔
(normℎ‘(𝑇‘0ℎ)) ≤
((normop‘𝑇) ·
(normℎ‘0ℎ)))) |
6 | | nmbdoplb.1 |
. . . . . . . . . . . 12
⊢ 𝑇 ∈
BndLinOp |
7 | | bdopln 30223 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝑇 ∈ LinOp |
9 | 8 | lnopfi 30331 |
. . . . . . . . . 10
⊢ 𝑇: ℋ⟶
ℋ |
10 | 9 | ffvelrni 6960 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
11 | | normcl 29487 |
. . . . . . . . 9
⊢ ((𝑇‘𝐴) ∈ ℋ →
(normℎ‘(𝑇‘𝐴)) ∈ ℝ) |
12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝑇‘𝐴)) ∈ ℝ) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘𝐴)) ∈ ℝ) |
14 | 13 | recnd 11003 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘𝐴)) ∈ ℂ) |
15 | | normcl 29487 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℝ) |
16 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℝ) |
17 | 16 | recnd 11003 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℂ) |
18 | | normne0 29492 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠
0ℎ)) |
19 | 18 | biimpar 478 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ≠ 0) |
20 | 14, 17, 19 | divrec2d 11755 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) = ((1 /
(normℎ‘𝐴)) ·
(normℎ‘(𝑇‘𝐴)))) |
21 | 16, 19 | rereccld 11802 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℝ) |
22 | 21 | recnd 11003 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℂ) |
23 | | simpl 483 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 𝐴 ∈
ℋ) |
24 | 8 | lnopmuli 30334 |
. . . . . . . 8
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) ·ℎ (𝑇‘𝐴))) |
25 | 22, 23, 24 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) ·ℎ (𝑇‘𝐴))) |
26 | 25 | fveq2d 6778 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) =
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ (𝑇‘𝐴)))) |
27 | 10 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘𝐴) ∈
ℋ) |
28 | | norm-iii 29502 |
. . . . . . 7
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ (𝑇‘𝐴) ∈ ℋ) →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ (𝑇‘𝐴))) = ((abs‘(1 /
(normℎ‘𝐴))) ·
(normℎ‘(𝑇‘𝐴)))) |
29 | 22, 27, 28 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ (𝑇‘𝐴))) = ((abs‘(1 /
(normℎ‘𝐴))) ·
(normℎ‘(𝑇‘𝐴)))) |
30 | | normgt0 29489 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ
↔ 0 < (normℎ‘𝐴))) |
31 | 30 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (normℎ‘𝐴)) |
32 | 16, 31 | recgt0d 11909 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (1 / (normℎ‘𝐴))) |
33 | | 0re 10977 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
34 | | ltle 11063 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (1 / (normℎ‘𝐴)) ∈ ℝ) → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
35 | 33, 34 | mpan 687 |
. . . . . . . . 9
⊢ ((1 /
(normℎ‘𝐴)) ∈ ℝ → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
36 | 21, 32, 35 | sylc 65 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (1 / (normℎ‘𝐴))) |
37 | 21, 36 | absidd 15134 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(1 / (normℎ‘𝐴))) = (1 /
(normℎ‘𝐴))) |
38 | 37 | oveq1d 7290 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(1 / (normℎ‘𝐴))) ·
(normℎ‘(𝑇‘𝐴))) = ((1 /
(normℎ‘𝐴)) ·
(normℎ‘(𝑇‘𝐴)))) |
39 | 26, 29, 38 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·
(normℎ‘(𝑇‘𝐴))) = (normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
40 | 20, 39 | eqtrd 2778 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) =
(normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
41 | | hvmulcl 29375 |
. . . . . 6
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
42 | 22, 23, 41 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
43 | | normcl 29487 |
. . . . . . 7
⊢ (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ∈ ℝ) |
44 | 42, 43 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈
ℝ) |
45 | | norm1 29611 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
46 | | eqle 11077 |
. . . . . 6
⊢
(((normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈ ℝ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) = 1) →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) |
47 | 44, 45, 46 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ≤ 1) |
48 | | nmoplb 30269 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ ℋ ∧
((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) →
(normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normop‘𝑇)) |
49 | 9, 48 | mp3an1 1447 |
. . . . 5
⊢ ((((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) →
(normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normop‘𝑇)) |
50 | 42, 47, 49 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normop‘𝑇)) |
51 | 40, 50 | eqbrtrd 5096 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normop‘𝑇)) |
52 | | nmopre 30232 |
. . . . . 6
⊢ (𝑇 ∈ BndLinOp →
(normop‘𝑇)
∈ ℝ) |
53 | 6, 52 | ax-mp 5 |
. . . . 5
⊢
(normop‘𝑇) ∈ ℝ |
54 | 53 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normop‘𝑇) ∈ ℝ) |
55 | | ledivmul2 11854 |
. . . 4
⊢
(((normℎ‘(𝑇‘𝐴)) ∈ ℝ ∧
(normop‘𝑇)
∈ ℝ ∧ ((normℎ‘𝐴) ∈ ℝ ∧ 0 <
(normℎ‘𝐴))) →
(((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normop‘𝑇)
↔ (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴)))) |
56 | 13, 54, 16, 31, 55 | syl112anc 1373 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normop‘𝑇)
↔ (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴)))) |
57 | 51, 56 | mpbid 231 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴))) |
58 | | 0le0 12074 |
. . . 4
⊢ 0 ≤
0 |
59 | 8 | lnop0i 30332 |
. . . . . 6
⊢ (𝑇‘0ℎ) =
0ℎ |
60 | 59 | fveq2i 6777 |
. . . . 5
⊢
(normℎ‘(𝑇‘0ℎ)) =
(normℎ‘0ℎ) |
61 | | norm0 29490 |
. . . . 5
⊢
(normℎ‘0ℎ) =
0 |
62 | 60, 61 | eqtri 2766 |
. . . 4
⊢
(normℎ‘(𝑇‘0ℎ)) =
0 |
63 | 61 | oveq2i 7286 |
. . . . 5
⊢
((normop‘𝑇) ·
(normℎ‘0ℎ)) =
((normop‘𝑇) · 0) |
64 | 53 | recni 10989 |
. . . . . 6
⊢
(normop‘𝑇) ∈ ℂ |
65 | 64 | mul01i 11165 |
. . . . 5
⊢
((normop‘𝑇) · 0) = 0 |
66 | 63, 65 | eqtri 2766 |
. . . 4
⊢
((normop‘𝑇) ·
(normℎ‘0ℎ)) = 0 |
67 | 58, 62, 66 | 3brtr4i 5104 |
. . 3
⊢
(normℎ‘(𝑇‘0ℎ)) ≤
((normop‘𝑇) ·
(normℎ‘0ℎ)) |
68 | 67 | a1i 11 |
. 2
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝑇‘0ℎ)) ≤
((normop‘𝑇) ·
(normℎ‘0ℎ))) |
69 | 5, 57, 68 | pm2.61ne 3030 |
1
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴))) |